
Chapter 8

Desig n at the Register Transfer Level

8 . 1 INTRODUCTION

A digital system is a sequential logic system co nstruc ted with flip-flops and gates. Sequential
circuits can bespecified by means of state tables as shown in Chapter 5. To specify a large dig­
ital system with a state table is very difficult, because the number of states would be enor­
mous. To overcome this difficulty, digital systems are designed via a modular approach. The
sys tem is part itioned into modular subsys tems. each of which performs some function . The
modules are co nstructe d from such digita l devices as registers. decoders. multiplexers, arith­
metic elements, and control logic . The various modules are interconnected with datapaths and
control signals to fonn a digital sys tem. In this chap ter. we will introduce a design methodol­
ogy for describing and designing large, complex digital systems.

8 . 2 REGIS TER TRANSFER LEVEL ( RTL) NOTATION

Themodules of a digital system are bestdefined by a set of registersand theoperations that are per­
formed on the binary information stored in them. Examplesof register operations are shift, count,
clear. and load. Registers are assumed to be the basic componentsof the digital system. The in­
fonnation flow and processing performedon the data storedin the registersare referred 10 as register
transfer operations, We'll see subsequently how a hardware description language includes opera­
ton; that correspond to the register transfer operations of a digital system. A digital system is rep­
resented at the register transfer level (R1l..) when it is specified by the following threecomponents:

I , The set of registers in the system.

2. The operations thai are performed on the data stored in the registers.

3. The control that supervises the sequence of operations in the system.

334



Section 8 .2 Register Transfer level (RTl) Notation 335

A register is a group of flip-nops that stores binary infonnation and has the capability of per­
forming o ne or more elementary operations. A register can load new information or shift the
infonnatio n to the right or the le ft. A counter is. considered a regjste r that increments a num­
ber by a fixed value (e .g.• I ). A flip-flop is considered a one-bit regis ter that can be set. cleared.
or complemented. In fact. the flip-flops and associated gates of any sequential circu it can be
called regis ters by this definitio n.

Theoperations executed on the informa tion stored in registers are elementary operations thai
are perfonned in parallel on a data wordconsisting of bits during one clock cycle. The data pro­
duced by the ope ration may replace the binary information that was in the regi ster before the
operation exe cuted. Altern atively. me result may be transferred to another register (i.e.• an op­
eration on a register may leave its contents unchanged). Th e digital circuits introd uced in
Chapter 6 are registers that implem ent elementary operations. A counter with a parallel load is
able to perform me incre mcnt-by-o ne and load operations. A bidi rectional shift regi ster is able
to perform me shift-rig ht and shift-left ope rations.

The operations in a digital system are controlled by timing signals that sequence the oper­
ations in a prescribed manner. Certa in conditions thai depend on result s of previous operations
may determine the sequence of future operations. The outputs of the control log ic are binary
variables that initiate the vario us operations in the system's registe rs.

Infonnation tran sfer from one register to anoth er is designated in symbolic fonn by mean s
of a rep lacement operator. Th e statement

de notes a transfer o f the contents of regis ter RJ into register R2---that is. a replaceme nt of the
contents of register R2 by the contents of register RJ. By defin ition. the contents of the source
regi ster RI do nOlchange after the transfer. They are merely copied to RI . Thearrow symbol­
izes thetransfer and its direction: it points from the register whose con tents are being transferred
and towards the register tha i will receive the contents . A control signal would determine when
the operation ac tua lly executes.

The controller in a digital sys tem is a finite state machine whose ou tputs are the control
signals govern ing the regi..ter ope rations. In synchro nous machines. the operations are !>yn­
chronized by the system cloc k.

A statement that specifies a register tra nsfer operation implies that a datapath (i.e .• a se t of
ci rcu it con nec tion!'» is availab le from the outputs of the source register to the inputs of the des­
tination register and that the desti nation register has a parallel load capability. Data can be
transferred serially between registers. too . by repeatedly shifting their co ntents along a single
wire. one bit at a time. Normally. we want a register transfer ope ration to occur. not with every
clock cycle. but only under a predetermined condition. A conditional statement governing a reg­
ister transfer operation is symbolized with an if-then statement such as

If (TJ = I ) then (R2 - RJ)

where T1 is a contro l signal genera ted in the contro l sect ion. NOIe that the clock is not incl ud­
ed as a variable in the register transfer statements. It is a....umed that all transfers occur at a clock­
edge transition (i.e. , a trans itio n fro m 0 to I or from I to O). Although a contro l condition such
as TI may become true before the clock transition. the act ual transfer does not occur until the
clock transition does.



336 Chap ter 8 Design at the Reg ister Transfer Level

A conuna may be used to separate two or more operations thai are executed at the same
time (concurrently). Consider the statement

If (TJ - I lth," (R2-RI ,RI -R2)

This statement specifies an operation that exchanges the contents of two registers: moreover.
the operation in both registers is lriggered by the same clock edge, provided thai T3 == 1. This
simultaneous operation is possible with registers that have edge-t riggered flip-flops con­
trolled by a common clock (synchronizing signal). Other examples of register transfers are as
follows:

Rl - Rl + R2

R3-R3 + I

R4 - shrR4

R5 -0

Add contents of R2 to Rl (RI gets Rl + R2)

Increment R3 by I (count upwards )

Shift right R4

Clear R5 toO

In hardware. addition is done with a binary paralle l adder. incrementing is done with a COUnI­

cr. and the shift operation is implemented with a shift register. The type of operations most
often encountered in digital systems can beclassified into four categories:

1. Transfer operations. which transfer (i.e.•copy) data from one register to another.

2. Arithmetic operations. which perform arithmetic on data in registers.

3. Logic operations. which perform bit manipulation (e.g., logical OR) of nonnumeric data
in registers.

4. Shift operations. which shift data between registers.

The transfer operation does not change the information content of the data being moved from
the source register to the destination register. The other three operations change the infonn a­
no n content during the transfer. The register transfer notation and the symbols used to repre­
sent the various register transfer operations are not standardized. In this text, we employ two
types of notation. The notation introduced in this section will be used infonn ally to specify and
explain digital systems at the register transfer level. The next section introduces the RTL sym­
bols used in the Verilog HDL.

8 .3 REGISTER T RA N SFER LEVEL IN HDL

Digital systems can be described at the register transfer level by means of a hardware de­
scription language (HDL). In Verilog, descriptions of RTL operations use a combination of
behavioral and dataflow constructs and are employed to specify the register operations and the
combinationallogic functions implemented by hardware. Register transfers are specified by
means of procedural assignment statements within an edge-sensitive cyclic behavior. Combi­
national circuit functions are specified at the RTL level by means of continuous assignment state­
ments or by procedural a..signment statements within a level-sensitive cycl ic behavior. The
symbol used to designate a register transfer is either an equals sign (==) or an arrow «== ); the
symbol used to specify a combi national circuit function is an equals sign. Synchronization



Section 8.3 Regi ster Transfer Level in HDL 337

with the cloc k is represented by associating with an always statement an event control ex­
pression in which sensitivity to the clock event is qualified by posedge or negedge. The always
keyword indicates that the associated block of statements will be executed repeatedly, for the
life of the simulation. The @ operator and the event control expression preceding the block of
statements synchronize the execution of the statements to the clock event.

The following examples show the various ways to specify a register transfer operation in
Verilog:

(a) assign S = A + B;
(b) always@ (A, B)

S= A + B;
(c) always@ (negedge clock)

begin
RA =RA+RB;
RD = RA:

end
(d) always @ (negedge clock)

beg in
RA <= RA + RB;
RD <= RA;

end

If Continuous assignment for addition operation
/I Level-sensitive cyclic behavior
{f Combinational logic for addition operation
fI Edge-sensitive cyclic behavior

fl Blocking procedural assignment for addition
/I Register transfer operation

1/Edge-sensitive cyclic behavior

1/Nonblocking procedural assignment for addition
1/Register transfer operation

Contin uous assignments are used to represent and specify combinational logic circuits. In
simulation. a continuous assignment statement executes when the expression on the right-hand
side changes. The effect of execution is immediate. (The variable on the left-hand side is up­
dated .) Similarly, a level-sensitive cyclic behavior executes when a change is detected by its
event control expression (sensitivity list). The effect of assignments made by the =' operator
are immediate. The continuous assignment statement (assign) describes a binary adder with in­
puts A and B and output 5. The target operand in a continuous assignment statement (5 in this
case) cannot be a register data type. but must be a type of net. for example, wire . The proce­
dural assignment made in the level-sensitive cyclic behavior in the second example shows an
alternative way of specifying a combinational circuit for addition. Within the cyclic behavior,
the mechanism of the sensitivity list ensures that the output. 5, will be updated whenever A. or
B. or both change.

There are two kinds of procedural assignments: blocking and nonbtocking, The two are dis­
tinguished by the symbols that they use and by their operation. Blocking assignments use the
equals symbol (=') as the assignment operator. and nonblocking assignments use the left arrow
(< =') as the operator. Blocking assignment statements are executed sequentially in the order
[hat they are listed in a sequential block: when they execute, they have an immediate effect on
the contents of memory before the next statement can be exec uted. Nonblocking assignments
are made concurrently. This feature is implemented by evaluating the expression on the right­
hand side of each statement in the list of statements before making the assignment 10their left­
hand sides. Consequently, there is no interaction between the result of any assignment and the
evaluation of an expre ssion affecting another assignment. Also. the statements associated with
an edge-se nsitive cyclic behavior do not execute until the indicated edge condition occurs.



338 Chapter 8 Design at the Registe r Transfer Level

Co nsider the two examples given. In the blocking procedural assig nme nt, the first state ment
transfers the sum 10 RA and the second statement tran sfers the new value of RA into RD.At the
completion of the operation, both RA and RD have the same val ue. In the nonblocking proce­
dural assignment. the two operations are performed concurrently, M) thar RD receives the orig­
inal value of RA. The activity in both examples is launched by the clock und~oing a falling
edge transition .

TIle regi sters in a system are clocked simultaneously (concurrently). lbe D-i nput of each
flip-flop determine.. the value Ihat will be assigned to its output . independently o f the inp ut to
any other flip-flop. To ensure synchro nous operations in RTL design. and to ensure a match be­
tween an HDL model and the circuit synthesized from the model. it is necessary that non­
block ing procedural assig nme nts be used for all varia bles that are assigned a value with in an
edge-sensitive cyclic behav ior (always clocked), The nonblocking assignme nt that appe ars in
an edge-sensitive cyclic beh avior models the behavior of the hard ware of a synchronous se-
quential circuit accurately. ...

HDl Operators

The Verilog HDL operators and the ir symbo ls used in RTL design are listed in Table 8.1. The
arithmetic. logic. and !!>hift operat ors describe register tran sfer operation s. The logical and re­
lational operators spec ify co ntrol condi tions and have Boolean expressions as their argu ment s.

The operands of theari thme tic ope rators are num bers. The -e• - , •• and I operators form the
sum. difference. product. and quotient . respectively. of a pair of operands. The e xponent iatio n
operator (..) was added 10 the lang uage in 2001 and forms a double-precision floating-point
value from a base and exponent having a real . integer. or signed value. Neg ative numbers are
represented in z's-compierrem form . The modulus operator produces the remainder from the
division of two numbers. For example, 14 % 3 evaluates to 2.

There are two types of logic operators for binary word s: bitwise and reduction. The bitwise
operators perform a bit-by -bit operation on two vec tor operands to form a vector result. Tbey
take each bit in one ope rand and perform the operation .....ith the corresponding bit in the other
operand. Negation ( - ) is a unary opera tor, it complements the bilo; of a single vector ope rand
10 form a vector result. The redu ct ion operators are also unary. acting on a single operand and
producing a scalar (one-bit) res ult. They operate pai rwise o n the bits of a word. from right 10

left . and yield a one-bit resul t. For exam ple. the red uction :'IIOR ( - I) result s in 0 .... ith operand
00 101 and in I with operand 00000. The result of applying the r\ OR operat ion on the first two
bits is used with the third bit, and so forth. Negation is nor used a.. a reduct ion operator. Truth
tab les for the bitwise operators are the same as those listed in Table 4 .9 in Section ~ . 1 2 for the
corresponding Verilog primitive (e.g., the and primitive and the & bitwise operator have the
same troth table ). The output of an AND gate with two scalar inputs is the same a" the re sult
prod uced by ope rating on the two bits with the & operator,

The logical and relational operators are used to fonn Boolean expressions and can take u ri ­
abies or expression.. a...operands. (Nolf! : A variable i..atsc an expression.) Used basically (or de­
termining true or falsecondition.s, the logical andrelational operators evaluate to I if the condit ion
expressed is true and to 0 if thecondition is false . If the condition is ambiguous. they evaluate
to x. An operand tha t is a variable evaluates to 0 if the value of the variable is equal to zero and



Section 8.3 Register Transfer level in HDl 339

Table 8 .1
Verllog 200' HDL Opera tors

Operator Type Symbol Operation Performed

Arithmetic • addition

subtraction

multiplication

division

% modulus

exponentiation

Logic negation (complement)

(bitwise > AND

nr OR

reduction) • exclusive-OR (XOR)

Logical I negation

>& AND

II OR

Shift » logical right shift

« logical left shift

»> arithmetic right shift

«. arithmetic left shift

{.} concatenation

Relational > greater than

• less than

='" equality

!= inequality

=== case equality

1== case inequality

>. greater than or equal

•• less than or equal

to I if the value is not eq ual to zero. For ex am ple, if A = 1010 and B = 0000, then the ex­
press ion A has the Boolean va lue I (the number in question is not equal to 0) and the expres­
sio n B has the Boolean val ue O. Results of othe r operations w ith these values are as follo ws:

A&& B= O

A II S=1
!A= 0

!B = 1

Il logical AND
If logical OR
Il logical complement
Il logica l co mple me nt



340 Chapter 8 Design at th e Register Transfe r Level

(A :> B) = 1 /I is greater than
(A == B) = 0 /I identity (equality )

The relational operators === and !==test for bitwise equality (identity) and inequality in ver­
ilog 's fou r-val ued logic system. For example , if A = OxxO and B = DuO. the test A == = B
wou ld eval uate to true. but the test A == B would evaluate to x.

Verilog 200I has logical and arithmetic shift operators. The logical shift ope rators shih a vec­
tor operand to the right or the left by a specified number of bits. The vacated bit pos itions are
filled with zeros . For example, if R = 11010, then the statement

R =R »1;

shifts R to the right one pos ition. The val ue of R that results from the logical right-shift operatio n
is 01101. In contrast. the arithmetic right-shift operator fills the vacated cell (the mo st significant
bit (MSB» with its original contents when the word is shiftedto the right. The arithmetic left-shift
operator fills the vucatc-dce ll with a 0 when the word is shifted to the left. The ari thmetic righ t­
shift opera tor is used when the sign extension of a number is important. If R = 110 10. then the
statement

R :>:>:> 1;

produces the resu lt R = 11101; if R = 01101. it produ ces the result R = 00 110. There is no
d istinction betwee n the logical left -shift and the ari thmetic left-shift operators.

The concatenation opera tor pro vide s a mechanism for appendi ng multiple operands. It can
be used to specify a shift. incl uding the bits transferred into the vacan t positions. Th is aspec t
of its operation was sho wn in HDL Example 6.1 for the shift register.

Expressions areevaluated from left to right. and their operators associate from left 10right (with
the exce ption of the conditional operator) accord ing to the precedence shown in Table 8.2. For
example. in the expression A + B - C. the value of B is added to A. and then C is subtracted
from the resuh . ln the expression A + BIC. the value of B is divided by C. and then the result is
added 10A because the division ope rator ( I ) has a higher precedence than the addition operator
(+) . Useparentheses 10 establish precedence. For example, the expression (A + 8 )/C is nol the
same as the express ion A + BIC.

Lo o p Statements

Verilog HDL has four types of loops that execute procedural statements repea tedly: repeat, fo r­
ever. while, and for. A ll looping statements must appear inside an initial or aI\t'8 )'S block.

Th e repeat loop executes the associated statements a specified number of times. The fol-
lowing is an example tha t was used prev iously:

initial
beg in

clock = 1'bO;

repeat (16)
#5 clock =- clock;

end

Thi s cod e produ ces eight clock cycles with a cycle time of 10 time unit s.



Section 8.3 Regi ster Transfe r Level in HDL 341

Table 8 .2
Verilog Operator Precedence

+ - ! - & - & l - [
,

_ /\ 11- (unary) Highest precedence

••
•/%

+- (binary)

« » «< >>>

< <= > >=

"' .. != === != =

& <binary)
, ,- _II (binary)

I {binary)

&&

II
7: (conditional ope rator)

{} {{)} Lowest preceden ce

The fore ver loop causes uncondit ional, repetitive execution of a procedural statement or a
block of procedural statements. For example, the following loop produces a continuous clock
having a cycle time of 20 time units:

Initial
begin

clock = 1'bO;
forever

#10 clock = - clock;

end

The while loop executes a statement or a block of statements repeatedly while an expres­
sion is true. If the expression is false to begin with, the statement is never executed. The fol­
lowing example illustrates the use of the while loop:

integer count;
In it ial

begin
count = 0;
while (count < 64)

#5 count = count + 1;
end



II Control (index) variable fOf' loop

1/Two binary inputs
II Four binary outputs

342 Chap ter 8 Design at the Regist er Transfer Level

The valu e of counr is incremented from O!O 63. Each increment is delayed by five time units.
and the loop exits at the count of 64.

In dealing with looping statements. it is sometimes convenient 10 use the in teger data type
to index the loop. Integers are decl ared with the keyword fnteger . as. in the previous exam ple.
Although it is possible to use a reg variable to index a loop. sometimes it is more convenient to
declare an integer variable. rather than a reg. for counting purpo ses. Variables declared as data
type reg are stored as unsigned numbers. Those dec lared as data type integer an: store as signed
numbers in z 's-com plemem format. The default width of an integer h a minimum of 32 bits.

The for loop contains three pans separa ted by IWO semico lons:

• An initial condition.

• An expression to check for the terminating condition.

• An assig nment 10 change the control variable.

The following is an example of a for loop:

for (j = 0; j < 8; j = j + 1)
begin
1/procedural statements go here

end

The for loop sta tem ent repeats the exe cut ion of the proced ural statements eight times. The
control variable is j . the initial co nd ition is j =O. and the loop is repeated aslong a!l j is less
than 8. After eac h execution of the loop statement. the val ue of j is incremented by I.

A description of a two-to-four -line decoder using a for loop is shown in HDL Example 8.1.
Since o utput Y is evaluated in a procedural statement , it ITIu!>t bedecl ared as type rea. The co n­
trol varia ble for the loo p is the integer k. When the loop is expanded (unrolled ). we get the fol­
lowing four condi tions (IN and Yare in binary. and the index for Yis in decimal):

if IN = 00 then Y(O) = 1; else V(O) = 0;

if IN= 01 then Y(1) = 1; else Y(1 ) = 0;

if IN = 10 then V(2) = 1; else Y(2) = 0;

if IN = 11 then Y(3) = 1; else Y(3) = 0;

Hil l Example 8.1

1/Description of 2 x 4 decoder using a fo r loop statement
module decoder (IN, V);

input 11: OJIN;
output 13: OJ Y;
reg 13: OJ Y;
integer k;

always @ (IN)
for (k = 0; k <= 3; k= k+ 1)



Section 8.3 Register Transfer Level In HOL 343

if (IN == k) Y[k] = 1;
else Y[k] ::: 0;

endmodule

Logic Synthesis

Logic synthesis is the automatic process by which a computer-based program (i.e., a synthesis
tool ) transforms an HDL model of a logic circu it into an optimized netlist of gates that perform
the operations specified by the source code. There arevarious target technologies that implement
the synthesized design in hardware. The effective use of anHDL description requires that designers
adopt a vendor-specific style suitable for the particular synthesis tools. The type of ICs that im­
plement the design may be an application-specific integrated circuit (ASIC), a programmable
logic device (PLD), or II field-programmable gate array (FPGA). Logic synthesis is widely used
in industry to design and implement large circuit s efficiently. correctly, and rapidly.

Logic synthesis too ls interpret the source code of the hardware descrip tion language and
translate it into an optimized gate struc ture, accomplishing (correctly) all of the wor k that
would bedone by manual methods using Kam augh maps . Designs writte n in Verilog or a com­
parable language for the purpo se of logic synthesis tend to be at the regi ster transfer level. This
is because the HDL constructs used in an RTL description can be converted into a gate-leve l
descripti on in a straightforward man ner. The following examples discuss how a logic synthe­
siler can interpret an HDL construct and convert it into a gate structure .

The continuous assignment (assign) statement is used to describe combinational circuits. In
an HDL. it represents a Boo lean equation for a logic circuit. A continuous assignment with a
Boolean express ion for the right-ha nd side of the assignment statement is synthesized into the
corresponding gate circuit implemen ting the expression. An expression with an addition operator
(+ ) is interpreted as a binary adder with full-adder circuit s. An expression with a subtraction
operator ( - ) is converted into a gate-level subtracter consisting of full adders and exclusive­
OR gates (Fig. 4.13). A statement with a conditional operator such as

assign Y = S 7 In_1 : In_O;

trans lates into a two-to-one-line multiplexer with control input S and data inputs In_I and In_O.
A statement with multiple conditional opera tors specifies a larger mult iplexer.

A cyclic behavior (always . .. ) may imply a combinational or sequential circuit. depe nding
on whether the event control expression is level sensitive or edge sensitive . A synthesis tool will
interpret as combinational logic a level-sensitive cyclic behavior whose event control expression
is sensitive to every variable that is referenced within the behavior (e.g.. by the variable's appearing
in the right-hand side of an assignment statement). The event control expression in a description
of combinational logic may not be sensitive to an edge of any signal. For example.

alwa ys @ (In_ 1 or In_Oor S)

If (S ) Y = ln_1 ;

else Y = In_O;

trans lates into a two-to-one-line multi plexer. As an alternative. the case statement may be used
to imply large multiplexers. Th e casex statement treats the logic values x and z as don 't-cares
when they appear in either the case express ion or a case item.



344 Cha pter 8 Design at t he Register Transfe r Level

An edge-sensitive cycl ic behavior (e.g .. a lway s @ (po s edge clock» specifies a synchro­
nous (clocked) sequentia l circuit. The implementation of the corresponding circuit consists of
o flip-flops and the gates that implement the synchronous register transfer operations specifi ed
by the statements associa ted with the event control expression. Examples of such circuits are reg­
isters and counters. A sequential circuit description with a case statement translates into a con­
trol circuit with D flip-flops and gates that Conn the inputs to the flip-flops. Thus. each statement
in an RTL description is interpreted by the synthesizer and as signed to a corresponding gate
and flip-flop circuit. For synthesiza ble sequential circuits. the event control expression must be
sensitive to the positive or the negative edge of the clock (sy nchronizing signal). but not to both .

A simplified flowchart of the process used by industry to design d igital systems is shown
in Fig. 8. 1. Th e RTL description of the HDL design is simulated and checked for proper

Synthesize
Ilcllbl

C pare
Simulation

results

FIGURE 8 .1
A simplified flowcha rt for Hnt-besed modeling, verification, and synthesis



Sect ion 8.4 Algorit hm ic State Machines (AS Ms) 345

operation. hli ope rational features must match those given in the specification for the behav­
ior of the circuit. Th e test bench provides the stimulus sig nals to the simula tor. U the result of
the simulation is not satisfactory. the HDL descriplion is corrected and checked again. After the
simulation run shows a valid design, the RTL description is ready to becompiled by the logic
synthesizer. All errors (syntax. and function al) in the description must be eliminated before
synthesis . The synthesis tool generates a netlist equivalent to a gate-level description of the de­
sign as it is represented by the model . If the model fails to express the functionality of the spec­
ification. fhe circuit will fail to do so also. The gale-level circuit ls simulated with the same set
of stimuli used to check the RTL design . If any corrections are needed, the process is repeat­
ed until a satisfactory simulation is achieved. The results of the two simulat ions are compared
to see if they match. If they do not, the designer must change the RTL description to COITt'ct any
errors in the design. Then the description is again compiled by the logic synthesizer to generate
a new gate-level description. Once the designer is satisfied with the results of <Ill simulation
tests, the design of the circuit is ready for physical implementation in a technology. In practice,
additional testing will be performed to verify that the timing speci fications of the circuit can be
met in the chosen hardware technology. That issue is nut within the scope of this text.

Logic synthes is provides seve ral advantages to the designer. 11 takes less time to write an
HDL description and synthesize a gate-level realization than it docs 10 develop the circuit by man­
ual entry from schematic diagrams.Th e ease of changing the description facilitates exploration
of design alternatives. It is faster. eas ier. less expen..ive, and less risky to check the valid ity of
the design by simulation than it is to prod uce a hardw are prototype for eva luation. A schemat­
ic and the database for fab ricating the integrated circuit can be generated automatically by
synthesis tools . The HDL model can be compiled by different tools into different technologies
(e.g.. ASIC cells or FPGAs), providing multiple returns on the investment to create the mode l.

8 .4 ALGORITHMIC STATE MACHINE S (AS Ms)

The binary information stored in a digital system can be classified as either data or control in­
format ion. Data are discrete elements ofinformation (binary words) that are manipulated by per­
forming arithmetic, logic, shift, and other similar data-process ing operations. These operations
are implemented with digital components such as adders. decoders , multiplexers, counters. and
shift registers. Control information provides command signals that coordinate and execute the var­
ious operations in the data section in order to accom plish the desired data-processing tasks.

The log ic design of a d igital sys tem can bed ivided into two distinct pans. One pan is con­
cemed with the design of the digital circ uits that perform the data -processing operations. The
other pan is concerned with the design of the control circuits that determine the sequence in
which the various actions are perform ed.

The relationship between the control logic and the data-processing opera tions in a digital sys­
tem is shown in Fig. 8.2. The data-processing path. commonly referred to as the datapath: unit,
manipulates data in registers according to the sys tem's req uirements. The control unit issues a
sequence of co mmands to the datapath unit. Note thai an internal feedback path from the da ta­
path unit to the control unit provides status cond itions that the co ntrol unit uses together with
the external (primary) inputs 10 determi ne the sequence of cont rol signals (outputs of the control



346 Chap te r 8 Design at the Register Transfer level

tnput
dutu

r··--·- -------- - -.--.--.----------- -----------------.

Input ! ~~~~Zl
signals i

(tx/fm u{j i

i
I, StatUS

signuls

i ,.................._ -_ _ ---_._--_._.__ _......... _ _ _._ .~

Ou/pm
daea

FI('UR E 8.2
Control and datapath Inte raction

unit) that direct the operation of me datapath unit. We 'lI see later that understanding how to

model this feedback relation ship with an HDL is very important.
The control logic mat generates me signals for sequenc ing the ope rations in me datapath unit

is a finite sta te machine (FSM) . i.e.• a synchronous sequential circ uit. The control commands
for the system are produced by me FSM as functions of the primary inputs. the sta tus signals.
and the state of the machine. In a given state. the outputs of me controller are the inputs to me
darap ath unit and dete rmin e me operations that it will execute . Depend ing on status cond itions
and other external inputs. the FSM goes to its next stale to initiate other operations. The digi­
tal ci rcuits that ac t as the control logic provide a time sequence of signals for initiating the op­
erations in the datapath and also determine the next state o f the control subsystem itself

The control sequence and datap ath tasks of a d igital system are specified by means of a
hardware algo rithm. An algorithm consists o f a finite number of procedural steps that spec ify
how to obtain a solution to a problem . A hard ware algorithm is a procedure for solving the
problem with a given piece of eq uipment. The most challenging and creative pan of d igital de­
sign is the formulation of hard ware algorithms for achieving required objectives. The goa l to
implement the algorithms in silicon as an integrated circuit.

A flowchart is a convenient way to specify the sequence of procedural steps and decision paths
for an algorithm. A tlo wchart for a hardware algori thm translates the verbal instruction.. [ 0 an
information diagram that enumerates the sequence of operations togethe r with the cond itions nec­
essary for their execution. A flowchart that has been developed spec ifica lly to de fine digital
hardware algorithms is called an algorithmic statemachine (ASM) chart . A stare machine is
another term for a sequential circu it. which is the basic structure of a digit al system.

ASM Chart

The AS M chan resembles a conventional flowchart. but is interpret ed somewhat different ly.
A conventional flowchart de scribes the procedu ral steps and deci sion paths of an algorithm in



Section 8.4 Algorithmic State Machines (ASMs) 347

1Binary code J oioi

t~~ztf*i~!1~1;~?f:?1%%i~~t
Otll{luJ: sigMb;:!egistit:Opera lians ~

j

FIGURE 8.1
ASM chart state box

(b)

a sequential manner, without taking into conside ration thei r lime rela tion..hip. The ASM: chan
describe s the sequence of events, a.. well as the timing relat ionship between the states of a se­
quent ial controller and the event!'. thai occur while going from one state 10 the next (i.e., the
events that are synchronous with change:'> in fhe slate). The chan is adapted 10 specify accurately
the control sequence and datuputh operations in a digital system, taking into cons ideration the
constraints of digital hardware.

The ASM chan is composed of three basic elements: the state box , the deci sion box . and the
conditional box . The boxes themsel ves are connected by directed edges ind icating the se­
quential precede nce and evolutio n of the states as the machine operates . There are various
ways to attach information to an ASM chan. In one , a stale in the control sequence is ind icat­
ed by a state box , as shown in Fig. 8.3(a ). The shape of the state box is a rec tang le within
which are written register opera tions or the names of output signals that the contro l generates
while being in the ind icated state. The state is given a symbolic name , which is placed within
the upper left comer of the box. The binary code assigned to the state is placed at the upper right
come r. (The state symbol and code can be placed in other places as well.) Figure 8.3(b) gives
an example of a state box. The state has the symbolic name SJ)t11lSe, and the binary code as­
signed to it is 0 101. Inside the box is written the register operat ion R - O. which indicates
that regis ter R is to be cleared to O. The name StarcOP-A ins..ide the box indicates. for exam­
pie, a Moore-type output signal that is asse rted while the machine is in slate SJ'duse and that
launc hes a certain operation in the datupath unit.

The style of state box shown in Fig. 8.3(b) is sometimes used in ASM chart s, but it can lead
to confusion about when the register operation R - 0 is to execute. Although the operation is
written inside the state box. it actually occurs when the machine makes a trans ition from
SJIOlIU to if'; next stale . In fact. writing the regis ter ope ration within the state box is a way (al­
beit possib ly confusing) to indicate that the contro ller must assert a signal that will cause the
register opera tion to occur when the machine changes state. Later we' ll introduce a chan and
no tation that are more suited to digital design and that will eliminate any ambiguity about the
register operations contro lled by a state mach ine.

The decision box of an ASM chan describes the effect of an input (i.e .• a primary, or external,
input or a status. or internal, signal) on the control subsystem. The box is diamond shaped and has
two or more exit path". as shown in Fig. 8.4. The input condition to be tested is wri tten inside [he
box. One or the other exit path is taken, depending on the evaluation of the condition. In the bi­
nary case . one path is taken if the condition is true and another when the condition is false. When
an input condition is assigned a binary value, the two paths arc indicated by I and 0, respectively.



348 Cha pter 8 Design at the Register Transfer leve l

Exit path

FIGURE 8 .4
ASM chart decision box

! Him" )' eo<l<'

:SlUle "am~

Moore -tyJ'C output si~nll is

Uncondi tional register
o rations

Cnooilionat/
( M,; aIYYQUlpU~
. and regisle{:~;~

:::, OpCration li-)~'-

(a)

FIGURE8 .5
ASM chart co nd itional box

V
F-G L(J(ld-":-G

100 , 100

SJ D
,b l (0 )

The state and decision boxes of an ASM chart are similar (0 those used in con ventiona l
flowcharts. The third element. the cond itional bo x, is unique to the ASM chart . The shape of
the conditional box is show n in Fig. 8.5(a), lis rounded comers differentiate it from the state
box. The input path to the condi tional box must come from one of the exit paths of a deci sion
box. The outputs listed inside theconditional box are generated as Mealy-type signals during
a g iven state; the register operations listed in tbe conditional box. are associated with a transi ­
tion from the state. Figure 8.5(b) shows an example with a conditional box . The control gen­
erates the out put signal Stan when in state 5_1 and checks the status of input Flag. If Flag = I.



Section 8.4 Algor ithmic State Machines (ASMs) 349

then R is cleared to 0 ; otherw ise. R remains unchanged . In either case. the next stare is 5_2 . A
register operation is associated with 5_2. We again note tha i th is style of chan can be a source
of confusion. because the state machine does 0 01 execute the indicated reg ister operation R - 0
when it is in S_J or the operation F - G when it is in 5_2 . Th e notati on actual ly indicates that
when the controller is in S_J. il must assert a Mealy-type signal that will cause the regis ter op­
erat ion R - 0 to execu te in the datapath unit. subject (0 the condition that Flag = O. Likewise.
in state 5_2. the controller mu~t generate a Moore-type output sig nal that causes the register
operation F - G 10 execu te in the datapath unit. The opera tions in the datapath unit are syn­
chronized to the clock edge that causes the sta te to move from 5_J to 5_2 and from 5_2 10

5_3. respectively. Th us, the control signal generated in a given state affects the operatio n o f a
register in the datapath when the ne xt d ock. tra nsition occ urs. The result of the ope ration is
appare nt in the next stale .

The AS M chart in Fig. a .5{h) mixes descriptions of the dataparb and the controlle r, An ASM
chart for only the controller is shown in Fig. 8.5(c ), in which the regi ster ope rat ions are omit­
ted . In their place arc the control signals that must be generated by the contro l unit to launch
the operations of the datapath unit . Thi s chart is useful for describ ing the controller, but it doe s
not conta in adequate information about the dataputh . (we'll addre ss this iss ue later.)

ASM Block

An ASM block is a structure constsn ng of one state box and al l the deci sion and conditional
bo xes connec ted to its exit path. An AS:\I block. has one e ntrance and any number of exit paths
represented by the struc ture of the decision boxes. An AS~I chan consists of one or more
interconnected blocks. An exampl e of an AS~1 block is given in Fig. 8.6. Associated with state

011

lb}

010
••••_.J

100

F

fi GURE8.6
ASM block



350 Chapter 8 Design at the Register Transfer level

5_0 are two decision boxes and one conditional box. The d iagram distinguishes me block with
dashed lines around the entire structure, but this is not usually don e, since the AS M chan
uniquel y defines each bloc k from its structure. A state box without any deci sion or condi tion­
al boxes const itutes a simple block .

Each block in me ASM chart describes the state of the system during one clock-pulse in­
terval (i.e .. the interval between two success ive active edges of the cloc k). The operations with­
in the state and co nditional boxes in Fig . 8.6(a) are initiated by a common clock pulse when
the state of the controller transition s from 5_0 to its next state. The same clock pulse tran sfers
the system controller to one of the next states, 5_1. 5_2. or 5_3. as d ictated by the binary val­
ues of E and F. The ASM chan for the controller alone is shown in Fig. 8.6(b). The Moore-type
signal iner..A is asserted while the machin e is in 5_0 ; the Mealy-type signal Clear_R is gen­
erated conditionally when the state is 5_0 and E is asserted. In general. the Moore-type outputs
of the controller are generated unconditionally and are indicated within a state box : the Mealy­
type outputs are generated conditionally and are indicated in the conditional boxes connected
to the edges that leave a decision box .

The ASM chart is similar to a state diagram. Each state block is equivale nt to a state in a
seq uential ci rcuit. The decision bo x is equivalent to the binary information written along the
directed lines that connect two states in a state diagram. As a co n-.equence. it is sometimes
convenient to convert the chan into a state diagram and then use sequentia l circuit procedu res
to design the control logic . As an illustration, the ASM chart of Fig. 8.6 is drawn as a state di­
agram in Fig. 8.7. The states are symbolized by circl es. with their binary values writt en inside.
Th e directed lines indicate the cond itions that determine the next state. The unconditional and
conditional operat ions that must be performed in the datapath un it are not indicated in the state
diagram.

Sim plif icat ions

A binary decision box of an ASM chart can be simplified by labeling o nly the edge corre­
sponding 10 the asserted decision vari able and leaving the other edge withou t a label. A further
simplifica tion is to omit the edges corresponding to the state trans itions that occur when a reset
condition is asse rted. Output signals that are nOI asserted are not shown on the chart: the pres­
ence of the name of an output signal ind icates that it is asse rted .

EF "'OO

010
£F -Ol

011

e» 1

100

fiGURE 8 .7
State diagra m equivalent to the ASM chart o f Fig. 8 .6



Section 8.4 Algorithmic State Machines (ASMs) 3S1

nmlng Considerations

Thetimin g for all registers and nip-flops in a digital system is controlled by a master-clock gen­
erator.Tbe clock pulse.. are applied not only 10 the regt srers of the datapath. but also 10 all the
ni p-flops in the state machine implementing the control unit. Inputs are also synchronized to
the clock, because they are normally generated as outputs of another ci rcuit that uses the same
clock signals. If the input signal changes at an arbitrary time independe mly of the clock. we
ca ll it an asynchronous Input. Asynchronous inputs may cause a variety of problems. as dis­
cussed in Chapter 9. To simplify the design. we will assume thai all inputs are synchronized
with the clock and change slate in response to an edge transition.

The major difference between a co nventional flowchart and an AS:\.I chart is in interpret­
ing the time rela tionship among the various operations. For exa mple. if Fig. 8.6 were a co n­
vennonal flowchart, then the operations listed would be considered to follow one after anothe r
in sequence: First register A is incremented. and only then is E evaluated. If E "" I, then reg­
ister R is cleared and control gees to state 5_3. Otherwi ..e (if E "" 0). the next step is to eval­
uate F and go to state L l or L 2. In contrast, an ASM chan co nsiders the entire block as one
unit. All the regi ster operations that are specified within the block must occ ur in syncbronism
at the edge transit ion of the same clock pulse while the system changes from 5_0 to the next
state. This sequence of eve nts is presented pictorially in Fig. 8.8. We assume positive-edge
triggering of all flip-flops. An asserted asynchronous reset signal (il' secb) transfers the con­
trot ci rcuit into stare S_O. While in state 5_0. the contro l circui ts check inputs £ and F and
generate appropriate slgnalv accord ingly. If resl't_b h not asserted. the following operations
occ ur simultaneous ly at the next positive edge of the clock :

I . Register A is incremented.

2. If £ = I, register R is cleared.

3. Control transfers to the next state. as specified in Fig. 8.7.

Note that the two operations in the datapath and the change of state in the control logic occur
at rbe same time. Note also that the AS:\.I chart in Fig. 8.6(a) indicates the register ope rations
[hat must occur in the datapath unit, bUI does not indicate the control signal that is to befonned
by the control unit. Conv ersely. the chan in Fig. 8.6(b) indicates the contro l signals. bUI not the
datapatb operations. We will now present an AS~ID chart 10 provide the clari ty and comp lete
infonnation needed by logic designers.

Positive edge ofClock

Cl'KJl ==n I
I--- Prt senl Slale ----t- ....eu JI Oft --.o-i
I ( 5_0) I (SjorS...zorSJ) I

FIGURE 8 .8
Transition between states



352 Chapter 8 Design at th e Register Transfer Level

ASMD Chart

Algorithmic stare machi ne and datapath (AS MD) cham were developed to clarify the infor­
mation displayed by ASM charts and to provide an effective tool for designing a contro l unit
for a given datapath unit. An ASMD chart differs from anASM chart in three important ways:
( I) An ASMD chart does not list register opera tions within a slate bo x. (2) the edge s of an
ASMD chart are annotated with regis ter operations that are concurrent with the state transit ion
indicated by the edge. and (3) an ASMD chart includes condit ional boxes identifyi ng the sig­
nals which control the register operations thai annota te the edge s of the chart. Thus. an ASMD
chan associates register operations with stale transitions rather than with stares,

Designers form an ASMD chart in a three-step process that creates an annotated and corn ­
pletely specified ASM chart for the controller of a da tapath unir. The ste ps are to (I) form
an AS M chart displaying onl y how the input s to the controller determine its state tran sit ion s.
(2 ) convert the ASM chart to an ASMD chart by annotating the edges of the ASM chart 10 in­
dicate the concurrent reg ister operations of the datapath unit. and (3) modify the ASMD chan
to ident ify the con trol signals that are generated by the co ntrolle r and that cause the ind icated
register operat ions in the datapath unit. The ASMD chart produ ced by this process clearly and
completely speci fies the finite state machine of the controller and identi fies the register oper ­
ations of the given data path.

One important use of a slate machine is to co ntrol register operations on a datapath in a se­
quential machine thai has been partitioned into a controller and a darapath, An ASMD chart links
the ASM chan of the co ntroller 10 the datapa th it controls in a man ner thai serves as a unive r­
sal model represe nting all synchronous digital hardware design. ASMD charts help clarify the
design of a sequential machi ne by separating the design of its datapath from the design of the
controller. while maintaining a clear relationship betwee n the two units. Register operations that
occur co ncurre ntly with slate transitions are annotated o n a path of the chan. rather than in
stale boxes or in conditional boxes on the path . becau se these registers are not pan of the con­
troller, The outpu ts generated by the contro ller are the signals thai control the registers of the
da tapath and ca use the register operations annotated on the ASM D chan.

8 . 5 DESIGN EXAMPLE

We will now present a simple example demonstrating the use of the ASMD chan and the regis.
rcr transfer representation. We stan from the initial specifications of a system and proceed with
the development of an appropriate ASMD chart from which the digital hardware is then des igned.

Th e datapath unit is to cons ist of two JK flip- flops E and F. and o ne four-bit binary co unt­
er A{3: OJ. Th e ind ividual flip-flops in A are denoted by A 3• A2• A I. and AI). ..... ith A3 holding
the most significant bit o f the count. A signal. Stan, initiates the system's operation by clear­
ing the cou nter A and flip- flop F. At each subsequent clock pulse. the counter is incremented
by I until the operations stop. Counter bits A2 and A3 determine the sequence of operations:

If A2 = O. E is cleared to 0 and the count co ntinues.

If A2 = I. E is set to I: then, if A3 = O. the cou nt continues. but if A ) = I. F is set 10
I on the next clock pulse and the system stops cou nting,



Section 8.5 Design Example 353

Then. if Start =O. the system remains in the initial state. but if Star t = I. the opera­
tion cycle repeats.

A block diag ram of the system's architecture is shown in Fig. 8.9(.1). with (I ) the registers
of the datapath unit. (2) the exte rnal (primary) input signals. (3) the status signals fed back
from the datapath unit to the control unit. and (4) the control signals generated by the control
unit and input to the datapatb unit. Note that the names of the control signals clearly indicate
the operat ions that they cause to beexecuted in the datapath unit. For example. clr..J\_Fclears
registers A and F. The name of the signal resecb (altemanvely, reset_bar) indicates that the
reset action is acti ve low. The internal details of each unit are not shown.

ASMD Chart

An ASMD chart for the system is show n in Fig. 8.9(b) for asynchronous reset action and in
Fig. 8.9(c) for synchronous rese t action. The chart shows the state transitions of the controller
and the datapath operat ions assoc iated with those transitions. The chan is not in its final form.
for it does not identify the control signals generated by the controller. The nonblocking Ver­
Hog operator «=) is shown instead of the arrow ( - ) for register transfer operations because
we will ultimately use the ASMD chart to write a verilog description of the system.

When the rese t action is synchronous. the transition to the reset state is synchronous with
the clock. This transition is shown in the diagram. but aff other synchronous 1l'set path s are omit­
tedfo r clarity, Tbe system remains in the reset state. S_iJlt'. umil Stan is asserted . When that
happens (i.e.• Start = I). the state moves to Sj . At thr next clod; edge. depending on the
values of A ;! and A 3 (decoded in a priority order). the state returns to S_1 or goes to 5_2. From
5_2. it moves uncond itionally to S_jd/~. where it awaits another assertion of Stan.

Tbe edges of the chan represent the state transitions that occur at the act ive (i.e., synchro­
nizing) edge of the clock (e.g .• the rising edge) and are annotated with the register operations
that are to occ ur in the datapath . wi th Stan asserted in S_id/~, the state will tran..ition to S_ I
and the registers A and F will be deared. Note that. on the one hand. if a register operation is
anno tated on the edge leaving a state box. the ope ration occ urs unconditionally and will be
controlled by a Moore-type signal. For example. register A is incremented at every clock edge
that occurs .....hile the machine is in the state S_ 1. On the other hand, the register operation set­
ting register E annotates the edge leaving the decision 1>0 .\ for A2. The signal controlling the
opera tion will be a Mealy-type signal asserted when the system is in state S_1 and A2 has the
value I. Likewise. the control signal cleari ng A and F is asserted conditionally: The system is
in state S_idlf' and Sian is asserted.

In addition to showing that the counter is incremented in state S_1, the annotated paths
show that other operations occur conditionally w ith the same clock edge:

Either E is cleared and control slays in state Sj ( A2 = 0 ) or

E is set and control stays in stare S_ 1 ( A 2A) = 10) or

E is set and control goes to state S_2 ( A2A-' = I I ).

When control is in state S_2. a Moore-type control signal mu...t beasserted to set flip-flop F to
I. and the state return.. to S_idle at the next active edge of the clock.



354 Chapter 8 Design at the RegisterTransfer Level

Status signa ls

A' /

A2

Sian
!itCF

clr..AJ
iflcr..A

DaIQ~"h

A

I I
e
o
F

o

(. )

F < = l

A <= A + 1
A <= A + I

F < -I F < = l
/

(b) (e)
FICURE 8 .9
(a) Block diagram for de sign example
(b) ASMDchart for controller state transitions, asynchronous reset
(c) ASMDchart for controller state transitions, synchronous reset
(d) ASMD chart for a completely specified controller, asynchronous reset

Note: A3 deno tes A13),
A2 denotes A[2j.
< - de no tes no nblocking assignment
resetb denotes act ive-low reset condit ion

A < = A + I

reseCb



Section 8.5 Design Example 3SS

The third and final step in cre ating the AS:vrDchan is to insert conditional boxes for the sig­
nals genera ted by the controller or to insert Moore-type signal.. in the state boxes, as shown in
Fig. 8.9{d). Tbe signal clr-A_F is generated conditionally in state 5_idle. incr-A is generated
unconditi onally in S_ I. clr_E and sec£ are generated co nditionally in 5_ 1. and St'CF i..ge n­
era ted unconditionally in S_1. The AS\ t chan has three states and three bloch . The block as­
sociated with S_idle consi..ts of the slate box . one deci sion bo x. and one condi tional box. The
block associated with 5_1 consists o f only the slate bolt . In addition to clock and rt'uCb. me
control logic has o ne e xternal input. Start, and two status inputs. A2 and A3.

In this example. we have shown how a verbal (tex t) descri ption (specification) of a design
is trans lated into an AS\ 1D chan tha t completely describes the controller for the datapa th. in­
dicating the control ..ignals and the ir associated reg iste r operations. Th is design example does
not have a practical app lication. and in general. depending on the interpretation. the AS \ ID chan
prod uced by the three-step design proces.. for the controller may be sirnplified and formulated
diffe rent ly. Ho wever. o nce the AS\ 1D chart is establ ished . the procedu re for design ing the
circuit is straig htforward. In practice. desig ners use the A5,HO chart to write veritog models
of the controller and the dataputh and then synthesize a circuit directly f rom the Veri/OR de­
scription. We will first design the system man ually and then write the HDL description. keep­
ing synthes is as an optional step for those who have acce ss to synthes is tools.

nmlng Sequence

Every bloc k in anAS~m chan spec ifies the signals which contro l the operatio ns thai are to be
initialed by o ne common cloc k. pulse. The control signals ..pcc ified .....ith in the state and con­
ditiona l boxes in the block. are fonned wh ile the controller is in the indicated stare. and the an­
notated operations occur in the datapa th unit when the sta le mak es a tran sition alon g an edge
that exits the state , Th e change from one state to the nex t is performed in the control logic . In
orde r to apprec iate the timing relationship involved. we will list the step-by-step sequence of
operations after each clock. edge. beg inning with an assertion o f the signal Stan unt il the <'ys­
rem returns to the reset (initial) slate. 5_idle .

Tab le 8.3 shows the binary value, of the counter and the two flip-flops after every clock.
pu lse . The table also shows separately me status of A 2 and A3• as well as the present state of
the controller. We stan with state S_1 right after the input signal Stan has caused the counter
and flip-flop F 10 be c leared. We ..... iIl assume that the machine had been running before it e n­
tered S_idle. instead of enter ing it from a reset co nditio n. Th erefore. the value of E is assumed
to be I. because E is set 10 I when the machine enters 5_1 . before moving to S_idle (as shown
at the bottom of the table). and because E does not change during the transition from S_idle to
5_1. The system stays in state 5_1 dur ing the next 13 clock pu lses. Each pulse increment s the
counter and either clears or sets E. Not e the relationship between the time at which A2 be­
comes a 1 and the time at which E is set to I. When A = ( A3 A2 Al .(0) 001 1, the next (4th)
cloc k pulse increments the counter to 0 100. but thai same clock edge sees the value of A2 as
O. so £ remains cleared . T he next (5 th) pulse changes the cou nter from 0 100 to 010 1. and be­
cause A 2 is eq ual to I before the clock pulse arri ves. £ is set to I. Similarly. £ is cleared to 0
not when the count goes fro m 0 111 to 1000. but when it goes from 1000 to 100 1. which is
whe n A2 is 0 in the present val ue or the cou nter,



356 Chapter 8 Design at t he Register Transfer Level

Ta ble 8 .3
~quenu of Opn-otionl for lHsign Example

Counter flip-Flops

A. A, A, Ao E f Conditions Sta t e

0 0 0 0 I 0 .4.2 "" 0, A ) = 0 U
0 0 0 I 0 0
0 0 I 0 0 0
0 0 I I 0 0

0 0 0 0 0 .4.2 -1 ,14. ) - 0
0 0 I I 0
0 I 0 I 0
0 I I I 0

0 0 0 I 0 A2 ., O. AJ .. I
0 0 I 0 0
0 I 0 0 0
0 I I 0 0

0 0 0 0 .4. 2 - I. AJ - I
0 I I 0 U
0 I I I S_idlt

When the count reaches 1100 . both A 2 and A ) are equal 10 1.1De next clock edge incre ­
mentsA by I. sets £ to I. and transfers control to stale 5_2. Control stays in 5_2 for a ni)"one
clock period . The clock edge associated with the path lea ving 5_2 sets flip-fl op F lo I and
tran sfers co ntrol to state S_idJe. The system stays in the initial state S_idlr as long as Stan
is equal 10 O.

From an observation of Table 8.3. it may seem that the operations performed on E are
delayed by one clock pulse. This is the difference betwee n an AS MD chan and a co nven­
tional flowchart . If Fig. 8.9(d ) were a co nve ntional flo wcha rt. we would ass ume that A is
first incremented and the incremented value wou ld have been used to check the status of A 2.
The operations that are performed in the d igital hardware as spec ified by a block in the
ASMD chart occ ur during the same cloc k cycle and not in a sequence of operations followi ng
each other in time. as is the usual interpretation in a conventional flowchart . Thu s. the value
of A 2 to be co nsidered in the decision box is taken from the value of the counter in the
present state and before it is incre men ted . Thi s is beca use the decision box for E belongs
with the same block as state S_J. The digital circuits in the co ntro l unit generate the signals
for all the ope rations specified in the present block prior to the arrival ofthe nt'xt dock pulse.
The ne xt cloc k edge executes all the operations in the registers and flip- Flops. incl uding
the Flip-flops in the controller that de termine the next state. using the present values of the
output signals of the co ntroller. Thus. the signals tha t co ntrol the operations in the datapa th
unit are formed in the co ntro ller in the cloc k cycle (contro l stal e) pru eding the cloc k edge
at which the operations execute.



Section 8.5 Design Example 357

Controller and Datapath Hardware Des ign

The AS~ID chan provides all the infonnation needed to design the digital system-the datapath
and the con troller. The actual boundary between the hardware of the controller and that of the
datapath can be arbitrary. but we advocate, first, that the datapath unit contain only the hard­
ware associa ted with its operations and the logic requi red, perhaps. to form status signals used
by the contro ller, and, second. that the control unit contain all of the log ic requ ired to gener­
ate the signals that control the operations of the datapath unit. The requ irement s for the design
of the datapath are indicated by the control signals inside the state and conditional boxes of the
ASMD chan and are specified by the annotations of the edges indicating datapath operations.
The control log ic is determined from the decis ion boxes and the requ ired state transitions. The
hardware configuration of the datapath and co ntroller i\ shown in Fig. 8.10.

,A

Dt .fign_fumplt
r-r-

lI Cl>fllfol/tr
'-':i§.,," ", .<.~~.!"

Stan
I

s_ ...:-4tt,{" ,.-
··'clt':.£:

I ik..t ,
". (/r,)t::.:" .; I

I A, DUf<lpUlh Iirni,;A- !I A, "~";-"'i/f./
d«k iJ./ 'rt.sdJ.i! '-.:f: iI

fesf'l_b
£

doc' - - f-t-I-+- -f

FIGURE 8 .10
Data path an d cont ro ller fo r desig n example



358 Chapter 8 Design at the Reg ister Tran sfer l evel

Note that the input signals of the control unit are the external (primary) inputs (Stan. re,~e t_b.

and clo ck) and the status signals from the datapath (A2 and A3). Th e status signals pro vide in­
formati on about the present cond ition of the datapath. Th is information. together with the pri ­
mary inputs and information abou t the present state of the machine. is used to form the output
of the contro ller and the value of the next state. Th e outputs of the controlle r are inputs to the
datapath and determine which operations will beexecuted when the clock undergoes a tran si­
tion . Note . also. that the state of the control is not an output of the cont rol unit. eve n if the en­
tire design is encapsulated in only one modu le.

The control subsystem is shown in Fig. 8.10 with only its inputs and outputs. with names match­
ing those of the ASMD chart. The detailed design of the controller is considered subsequently.
The datapath unit consists of a four-bit binary counter and two l K flip-flops. "The counter is sim­
ilar to the one shown in Fig. 6.12. excepr thar additio nal interna l gates are required for the syn­
chronous clear opera tion. The counter is incremented with every clock pulse when the controller
state is S_J. It is cleared only when control is at state S_idle and Stan is equal to I. The logic for
the signal efr-A_Fwill be included in the controller and requires an AKD gate to guarantee that
both conditions are present. Similarly. we can anticipate that the controller will use A:'\L>gates to
form signals st'C E and clr_E. Depending on whether the controller is in state S_' and \\ helher A2
is asserted. st'C F controls flip-flop F and is asserted unconditionally during state 5_2. Note that
all flip-flops and registers. including the flip-flops in the control unit. use a common clock.

Reg iste r Transfer Representation

A digital sys tem is represe nted at the register transfer level by specifying the registe rs. in the
system. the operations performed, and the control sequence. The register operatio ns and co n­
tro l inform ation can be specified with an ASMD chart . It is convenient to separa te the control
logic and the register operations for the datapath . The ASMD chan prov ides this separation and
a clear sequence of steps to design a contro ller for a datapa th. The contro l information and
register transfer operations can also be rep resen ted separately. as shown in Fig. 8.11. The stale
diagram specifies the control sequence. and the register operatio ns are represented by the reg­
ister transfer notation introd uced in Section 8.2. Th e state transition and the signal controlling
the register operation are shown with the operation. Th is repre sentati on is an altern ative to the
representation of the sys tem described in the ASMD chart o f Fig. 8.9(d) . On ly the ASMD chan
is really needed . but the state diagram for the controller is an alternat ive representation that iii
useful in manual design. The information for the state diagram is taken d irectly from the AS~ID
chart. The state names are specified in each state box. The conditions that cause a change of
state are specified inside the diamond-shaped decision bo xes of the AS~ID chart and are used
to annotate the state diagram. The directed lines betwee n states and the condi tion associated
with each follow the same path as in the ASMD chart. The register transfer ope rations for each
of the three states are listed fol lowing the name of the state. Th ey are taken from the state
bo xes or the annotated edges of the ASMD chart.

State Table

The state diagram can be convened into a state table from which the sequentia l ci rcuit of the
controller can be designed. First, we must assign binary values to each state in lhe AS~ID
chart. For" flip-flops in the control sequential ci rcuit. the ASMD chart can accommodate up



Section 8.5 Design Example 359

Staff = 0

S.JJ~\-----.(
Staff - I

5j dl.. _ 5j. d r.../C F:

5_1 - 5_1. iller_A :

ifIAz -lJ thenJ'fC I:':
if (Az '" 0) then clr_E:

S..l - S_idle. wI_F:

'b'

A

A - A + l

1:' - 1
t -o
F-1

flGURl 8 .11
Register transfer-level description of design example

to 2" states. A chan ..... ith 3 or 4 states requ ires a sequential c ircuit with two f li p-f lops. With 5
10 8 states. there is a need for three flip-flops, Each combination of llip-flop values represents
a binary number for one of the Mates.

A srare table for a controller is a list of present states and inputs and their corresponding next
stales and outputs. In most cases . there are many don' t-care input conditions that must be in­
cluded. so il is advisable 10arrange the state table to take those conditions into consideration.
We a......lgn the following binary values 10 the three states : S_idle :: OO.Sj = 0 1.andS_2 = I I.
Binary stale 10 is nOI used and will be treated as a don't -care condition. The stale table COrTe­

spending to the state diagram is shew n in Table 8.4. Two flip-flops are needed, and they are

Table 8 .4
State Table for tlK Controller of Fig. 8. '0

Pre sent Next
Stat e Inputs State Outputs

... -e
Present-State ~ ~ ... ",'

b'~, .' , .'~

Symbol C, C. Start ' 2 " C, C. • - • ., oS• • •
5_id/e 0 0 0 X X 0 0 0 0 0 0 0
S_idl.. 0 0 I X X 0 I 0 0 0 I 0

S_l 0 I X 0 X 0 I 0 I 0 0 I
S_l 0 I X I 0 0 I I 0 0 0 I
U 0 I X I I I I I 0 0 0 I
5_2 I I X X X 0 0 0 0 I 0 0



360 Chapter 8 Design at the Register Transf er level

labeled G] and Go. There are three inputs and five outputs. The inputs are taken from the con­
ditions in the decision boxes . The outputs depend on the inputs and the present state of the con­
trol. Note that there is a row in the table for each possible transi tion between states. Initial state
00 goes to slate 01 or stays in 00. depending on the value of input Start. The other two inputs
are marked with don 't-care x's, as they do not determine the next slate in this case . While the
system is in binary state 00 with Start = I , the control unit provides an output labeled clr...A_F
to initiate the required register operations, The transition from binary state 0 1depends on inputs
A 2 and A ), The sys tem goes to binary state II on ly if A 2A ) = I I; othe rwise, it remains in
binary state 01. Finally. binary slate I I goes 10 00 independently of the input variables.

Contro l Logic

The procedure for designing a sequential circuit start ing from a state table was presented in
Chapter 5. If this procedure is applied to Table 8.4. we need to use five-variable maps 10 sim­
plify the inpu t eq uations. Thi s is because there are five variables listed under the present-state
and input columns of the table. Instead of using maps to simplify the input equations. we can
obtain them directly from the state table by inspection. To design the sequential circuit of the
co ntroller with 0 flip-flops, it is necessary 10 go over the next-state columns in the state table
and derive al l the conditions that must set each flip -flop to I. From Table 8.4. we note that the
next-state column ofG I has a single I in the fifth row. The D input of llip-flop Gl must beequal
to 1 during present slate S_1 when both inputs A2 and A) are equ al to 1. Thi s condition is
expresse d with the J) flip-flop input equation

DCI =S_1A2A)

Sim ilarly, the next-state column of Go has four t 's, and the condition for selling this flip-flop is

To derive the five output functions. we ca n exploit the fact that binary state 10 is not used.
which simplifies the equation for clr...A_F and enables us to ob tain the following simplified set
of output equations:

set_E = S_IA2

clrj:: = S_1A2'

set F = S_2

clr_A_F = St ar r S_id le

incr_A = S_1

The logic diagram showing the interna l detail of the controller of Fig. 8.10 is drawn in Fig. 8.12.
NOIe thai although we deri ved the output equat ions from Table 8.4. they can also beobtained
directly by inspection of Fig. 8.9(d). This simple example illustrates the manual design of a eon­
troller for a datapath. using an ASMD chart as a starti ng point. The fact that synthesis too ls au­
tomatically exec ute these steps should beappreciated.



Sum - .....'-""-2 3

A'= ;::::jA,

Section 8.6 HDl Descript ion of Design Example 361

c1r...A J

incr...A

FIGURE 8.12
logic diagram of the control unit for Fig. 8.10

8 . 6 HDL DESCRIPTION OF DESIGN EXAMPLE

In previous chapters, .....e gave examples of HDL descriptions of combinational circuits,
sequential circuits. and various standard components such as multiplexers. counters, and reg­
isters. We are now in a position to incorporate these components into the description of a spe­
cific design. As mentioned previously, a design can be described either at the structural or
behavioral level. Behavioral descriptions may beclassified as being either at the register trans­
fer level or at an abstract algorithmic level. Consequently. we now consider three levels of
design: structural description. RTL description. and algorithmic-based behavioral description.

The structural description is the lowest and most detailed level. The digital system is spec­
ified in terms of the physical components and their interconnection. The various components
may include gates. flip-flops, and standard circuits such a" multiplexers and counters. The de­
sign is hierarchically decomposed into functional units. and each unit is described by an HDL
module. A top-level module combines the entire system by instantiating all the lower level
modules. This style of descript ion require s that the designer have sufficient experie nce not
only to understand the functionality of the system, but also to implement it by selecting and con­
necting other functional elements.

The RTL description specifies the digital system in terms of the registers. the operations
performed. and the control that sequences the operations. This type of description simplifies
the design process because it consists of procedural statements that detenni ne the relationship
between the various operations of the design without reference to any specific structure. The



362 Chapter 8 Design at the Register Transfer Level

RTL descri ption implies a cert ain hardware configuration among the registers. allowing the
designer to create a design that can be synthesized automatically, rather than manually. into stan­
dard dig ital components.

The algorithmic-based behaviora l description is the most abstract level. describing the func­
tion of the design in a procedura l. algorithmic forrn similar 10 a programming language. It does not
provide any detail on how the design is to be implemented ..... ith hardware. The algorithmic-based
behavioral description is most appropriate for simulating complex systems in order to verify de­
sign idea.. and explore tradeoffs. Descriptions at this level are accessible to nontechnical users
who understand programming languages. Some algorithms. ho.....ever. might nOI bes)nthesizable.

We will now illustrate the RTL and structural descriptions by using Ihe design example of
the pre vious section. The design example will serve as a model o f cod ing style for future ex­
arnple s and will exploi t alternative syntax options supponed by revisions 10 the Verilog lan­
guagc. (An algori thmic-based description is illustrated in Section 8.9.)

RTL Description

Th e block diagram in Fig. 8.10 descr ibes the design example. An HOL description of the
de sign exampl e can be written as a single RTL descriptio n in a Verilog mod ule or as a top­
level mod ule having instantiations of separate modules for the controller and the datapath. The
former opt ion simply ignores the boundar ies between the funct ional un its: the modules in the
latter option establish the boundaries shown in Fig . 8.9(a) and Fig. 8.10 . We advocate the sec­
ond option. because. in general. it distinguishes more clearly between the controller and the data­
path . This choice also allows one to easily substitute alternative controlle rs for a give n datapath
(e.g.• replace an RTL mode l by a structural model). The RTL description of the design exam­
pic is shown in HDL Example 8.2. Th e description follows the ASMO chart of Fig. 8.9(d ).
which conta ins a complete descript ion of the controller. the datapeth. and the interface between
them (i.e.• the ou tputs o f the con troller and the status signals). Likewise. o ur description has
three modules: De.~ix,,_Example_RTL. Controller_RTL. and Datapat 1l_R TL. The descriptions
of the controller and the datapath units are taken directly from Fig. 8.9l..d). Design_£rumple_RTL
declares the input and o utput port s of the module and instantiates Controller_RTL and
Datapath_RTL. At this stage of the description. it is important 10remember to declare A a... a vec­
tor. Failure 10 do so will produce port mismatch errors when the descriptions are compiled to­
gether. Note that the status signals A12] and A/3} arc passed to the con troller . The primary
(externa l) inputs to the controller are Start. clock (10 synchronize the systemj . and resetb . The
active-low input signal resetb is needed to initialize the state o f the controller to S_idfe. With­
OUI that signal. the controller could nor be placed in a known initia l slate.

Th e controller is described by three cycl ic (always ) behaviors. An edge-sensitive behavior
updates the state at the positive edge of the clock. depending o n whether a reset condition is
asse rted. Two level-sensitive behaviors describe the combinational logic for the next state and
the outpu ts of the controller. as specified by the ASMD chan . Notice tha t the description in­
cludes default assignm ents (0 all of the out puts tc.g.• secE = 0). This approach allows the
code of the cas t' logic 10 be simplified by expressing on ly explicit assertions of the variab les
(i.e .. values are assigned by exception). The approac h also ensures that every path through the
assignment logic a..signs a value to every variable . Thus. a synthesis tool will interpret the



Section 8.6 HDl Description of Design Example 363

logic to be combinational: failure to assign a value to every variable on every path of logic im­
plies the need for a transparent latch (memory) to implement the logic. Synthesis tools will pro­
vide the latch. wasting silicon area.

The three states of the controller are given symbolic names and are encoded into binary
values. Only three of the possible two-bit patterns are used, so the case statement for the next­
state logic includes a default assignment to handle the possibility that one of the three assigned
codes is not detected. The alternat ive is to allow the hardwa re to make an arbitrary assignment
to the next state ( Ilext_~·tate = 2 'bx;). Also. the first statement of the next-state logic assigns
nex t_stat e = S)dle to guarantee that the next state is assigned in every thread of the logic. This
is a precaution against accidentally forgetting to make an assignment to the next state in every
thread of the logic, with the result that the description implies the need for memory, which a
synthesis tool will implement with a transparent latch.

The description of Datapath_RTL is written by testing for an assertio n of each co ntrol sig­
nal from Comroller_RTL. The register transfer operatio ns are displayed in the ASMD chart
(Fig. 8.9(d)). Note that nonbloc king assignments are used (with symbol < = ) for the register
transfer operati ons. Thi s ensure s that the register operations and state transitions are concur­
rent , a feature that is especially crucial during control state 5_1. In this state, A is increment­
ed by I and the value of A2 (Al2 ]) is checked to determine the operation 10 execute at register
E at the next clock. To accomplish a valid synchronous design, it is necessary to ensure that
Al 2] is checked before A is incremented. If blocking assignments were used, one would have
to place the IWO statements that check E fi rst and the A statement that increments last. How­
ever, by using nonblocking assignments, we accom plish the required synchronization without
being concerned about the order in whic h the statements are lis ted. The co unter A in
Darapatlz_RTL is cleared synchronously because c1r....A_F is synchronized to the clock.

The cyclic behav iors of the controller and the datapath interact in a chain react ion: At the
active edge of the clock , the state and datapath regis ters are updated . A change in the state, a
primary input , or a status input causes the level-sensitive behav iors of the controller to update
the value of the next state and the outputs. The updated values are used at the next active edge
of the clock to determine the state transition and the updates of the datapath.

Note that the manua l method of design developed ( I) a block diagram (Fig. 8.9(a» show­
ing the interface between the datapath and the controller. (2) anASMD chart for the system (Fig.
8.9(dJl, (3) the logic equations for the inputs to the flip-flops of the controller, and (4) a circuit
that implements the controller (Fig. 8.12). In contra st, an RTL model describes the state tran­
sitions of the controller and the operations of the datapath as a step towards automatically syn­
thesizing the circuit that implements them. The descriptions of the datapath and contro ller are
derived directly from the ASMD chart in both cases.

1101. Example 8.2

1/RTL description of design example (see Fig. 8.11)
module Design _Example_RTL (A. E, F, Sta rt, clock, reset_b);
fI Specify ports of the top-leve l module of the design
fI See block diagram, Fig. 8 .10
output [3: 0) A;
output E, F;



If (Start) c1r_Af = 1;
begin incr_A '" 1; if (A2) set_E = 1; else clr_E = 1; end
setf = 1;

if (Start) next_state = 5_1; else next_state = S_idle;
if (A2 & A3) next_state =S_2; else next_stale =S_1:
next_state = S_idle;
next_state = SJdle;

364 Chapter 8 Design at the Registe r Transfer Level

input Start, clock, resetj b:
I/ Instantiate controller and datapath units
Controller_RTl MO(sat_E, clr_E, seCF. clr_AJ, incr_A. A(2]. A(3]. Start. dock.
reset_b );

Datapalh_RTl M1 (A. E. F. seCE. elr_E, setJ. clr_AJ . incr_A, clock);
endmodule
modu le ControlJer_RTl (set_E, clr_E, self , clr_Af , iocr_A, A2. A3, Start. clock,

reset_b);
output reg set_E. clr_E, set_F, clr_A_F. incr_A:
input Start. A2, A3, clock, reseCb;
reg (1: 0] state. next_slate;
parameter S_idle = 2'bOO, S_, = 2'b01. S_2 = 2'b11; 1/State codes
always @ (posedge elock or negedge reseCb) 1/State transitions (edge sensitive)
If (reseCb == 0) state <= S_idle;
else state <= next_state;

1/Code next-state logic directly from ASMD chart (Fig. 8.9d)
always @ (state. Start, A2, A3) begin 1/Next-state logic (level sensitive)
next_state = S_idre;
case (state)

S_idle:
S_1:
S_2:
defaul t:

endcase
end
1/Code output logic directly from ASMD chart (Fig. 8.9<:1 )
always@ (state. Start. A2) begin
set_E = 0; If default assignments; assign by exception
clr_E = 0;
set] = 0:
clr_AJ = 0;
incr_A '" 0;
case (state)

S_idle:
S_, :
8_2:

endc ase
end

endmodule
module Datapath_RTL (A, E. F. set_E. elr_E. seCF, c1r_AJ. iocr_A, clock):

output reg 13: OJ A; If register fo- counter
output reg E, F; If flags
Input seCE. clr_E. setf. d r_AJ. incr_A. clock;
If Code register transfer operations directly from ASMD chart (Fig. 8.9(d»



Section 8 .6 HDL Description o f Design Example 365

always @ (posedge clock) beg in
If (set_E)
If (elr_E)
If (se l_F)
if (c1r_A_F)
if (incr_A)

end
e ndmo dule

E <= 1;
E <= 0;
F <= 1;
begin A <= 0; F <= 0; end
A <= A + 1;

Testing the Design Description
The sequence of operations for the design example was investigated in the previ ous section.
Table 8.3 shows the values of E and F while register A is increme nted. It is instructive to de­
vise a test that checks the circui t to verify the validity of the HDLdescription . The test benc h
in HDLExample 8.3 provides such a module. (The procedure for writing tes t benches is ex­
plained in Section 4.12 .) The test module generates signals for Start. clock, and reset.b, and
checks the resulls obtained from regi sters A, E, and F. Initially, the resetb signal is set to 0 to
initialize the controller. and Start and clock areset to O. At time t = 5. the resec b signal is de­
asserted by selling it to I , the Start input is asserted by setting it to I . and the clock is then re­
peated for 16cycles. The $mo nitor statement displays the values of A. E, and F every IO ns.
The output of the simulation is listed in the example under the simulation log. Initially, at time
t = 0, the values of the registers are unknown , so they are marked with the symbol x.The first
positive clock transition, at time = 10. clears A and P, but does not affect E, so E is unknown
at this time . The rest of the tab le is identical to Table 8.3. Note that since Start is still equal to
I at time = 160. the last entry in the table shows that A and F are cleared to 0, and E does not
change and remains at I . This occurs during the second transition, from S_idle to 5_1.

111>1. Example 8.3

/I Test be nch for design example
modul e t_Design_Example_RTL;

reg Start , clock, resel_b ;
wire [3: OJ A;
wire E, F;
fl lnsta ntiate design example
Design_Exa mpJe_RTL MO(A, E. F, Start, clock, reseCb);
II Describe stimulus wavefo rms
initial #500 $flnls h; /I Stopwatch
Initial

begin
rese l_b = 0;
Start =0;
clock =0;
#5 reseC b =1; Sta rt =1;
repeat (32)



366 Chapter 8 Design at the Registe r Tra nsfer Level

begin
#5 clock = - clock; /I Clock generator

end
end

Init ial
Smonitor rA = %b E = %b F = %b time = %Od", A, E, F, Sti me);

end module
Simulation log:
Ae xxxx E = x F = xtime =O
A = 0000 E = x F =O time = 10
A = 000 1 E = 0 F = otime = 20
A = 00 10 E = 0 F = 0 time = 30
A = 00 11 E = 0 F = 0 time = 40
A = 0 100 E = 0 F = 0 time = 50
A = 0101 E = 1 F = 0 time = 60
A = 0110 E = 1 F = Otime =70
A = 0111 E = 1 F = 0 time = 80
A= 1000 E = 1 F = Otime = 90
A = 1001 E = OF e uume = 100

A = 1010 E = 0 F = 0 time = 110
A = 1011 E =0 F = otime = 120
A = 1100 E =0 F = o time = 130
A = 1101 E= l F= Otime= 140

A = 1101 E = 1 F= 1 time = 150
A = 0000 E = 1 F = 0 lime = 160

w aveforms produced by a simulation of Design.ExampleRtl. with the test bench are shown
in Fig. R. 13. Numerical values are shown in hexadecimal format.The results are annotated to call
attention to the relationship between a control signal and the operation that it cause... to execute.
For exam ple. the controlle r asse rts sec E for one dock cycle before the clock edge at which £ is
set to I. Likewise, setF asserts during the dock cycle before the edge at which F is .;,et to I. AI~,
clr..A_F is formed in the cycle before A and F are cleared. A more thorough verification of
De.'iigll_£ UUllpfcRTL would confinn thai themachine recovers from a reset on thefly ( i.e.• a reset
thai is asserted random ly after the machine is ope rating). Note that the signals in the output of the
simulation have been listed in groups showing (l ) clock and resecb. (2) Stan and the status
inputs, (3) the state. (4) the control signals. and (5) the datapath registers . It is strongly recom­
mended that the state always be displayed. because this information is esse ntial for verifying that
[he machine is opera ting correc tly and for dd>ugging lrs descrfptlon when it is nor. For the chosen
binary statc code. S_idle = ()(h = OH.S_J = 0 12 = IH. and S_2 == II ~ = 3H.

Structural Description

The RTL description of a design consists of procedu ral sraremenrs tha t de term ine the func­
tiona l behavior of the digital circuit. Th is type of description can beco mpiled by HOL synthesis
tools. from which it is possible toohtain the equivalent gate-level ci rcuit of the designIt is also



Section 8 .6 HD L De scrip t io n of Design Example 367

""arne
o so 100 I'"

~ ~~~~i-, ~ ~ ~~
,

dack "r~M,-b ; ; .
St<l'" f-' , , ,
A] . ,
AJ

; .
JI<lI~{J:O{

, i ~dr...AJ ~

srcE , : ,
d r_E I--'

,, ,
JrCF ,
incr..A ,

i /, :
A[J: O[ x , c
£ 1'-<F

,

fIGURES.1 3
Simulation re sults fo r de sign exam ple

possible to describe the de..ign by its ..uu cture rather than its funct ion . A structural descript ion
of a design consists of instantiation... of components that define the circuit eleme nts and their
interconnections. In this regard . a structural description is eq uivalent to a schematic diagram
or a block diagram of the circuit. Contemporary de..ign practice rel ies heavily o n Rll. de­
scriptions. but we will present a struc tura l descriptio n here to contrast the two approaches.

For convenience. the circuit is again decomposed into two parts: the controller and the data­
path. The block diagram of Fig. 8.10 shows the high-level partition bet wee n these unit!"> . and
Fig. 8. I2 provides additional underlying structural de ta ils of the controller. The structure of the
datapath is evident in Fig. 8. 10 and consists of the flip-flops and me four-bit counter with syn­
chronous clear. The top level o f the Verilog desc ription replaces Dt'sigfl_E.tample_RTL. Cons­
roller_RTL.andDawpath_RTL by Desig1l_Example_SIR. Controller_STR.and Datapath5TR.
respectively. The descriptions of Controller_STR and Daraparh_STR will be structural.

HDL Example 8.4 presents me structura l description of the design example. II consists of a
nested hierarchy of modules and gales describing ( I) me lop-level module. Design_Example....sTR.
(2) the modules describing the controller and the datapath. (3) the modules describing the f1ip­
flops and counters. and (4 ) gates implementing the logic of me controller. For simplicity. the
counter and flip-flops arc described by RTL models.

The top-level modu le (see Fig. 8.10) encapsulates me entire design by ( I) instantiating the
controller and the da rapath modu les. (2) decl aring the primary (external) inpu t signals. (3) de­
claring the ou tput signals. (4 ) declaring the co ntrol sign als generated by me controller and con­
nected to the dataputh unit. and (5) declaring the status signals genera ted by me datapath unit
and connec ted to the contro ller, The port list is identical to me Jist used in the RTL descri ption.
The outputs are declared as " Ire type here because they serve mere ly to connect the outputs



368 Chapter 8 Desig n at th e Regi ster Transfer level

of the datapath module to the o utputs o f the top-leve l modu le. with thei r logic value being de­
termined wit hin the datapath modu le.

The control module desc ribes the circuit of Fig . 8.12. The outputs of the two ni p-flops 0 1
and GOare declared a" " i re data type. G I and GOcannot bedecl ared as reg data type because
they are outputs of an instantiated D flip-flop. DG I and DGOare undeclared identifi ers. i.e..
imp licit wires. The name of a variable is local to the module or procedu ral block in wh ich it is
declared , Nets may not be declared within a procedural block (e.g .• begin , " end ). The rule
to remember is that a variable must bea declared register type (e.g.. reg ) if and only if irs value
is assigned by a procedural statement (i.e., a blocking or nonblocking assignment statement with­
in a proce dural block in cycl ic or single-pas!'> behavior or in the output of a sequential LUP J.
Th e instantiated gate.. specify the com binationa l pan of the ci rcuit. There are two flip-fl op
input equations and three output equations. The outputs of the flip-flops GI and GO and the input
equations DGl and DGO replace output Q and input D in the instant iated flip-nap s. The D
flip-flop is then described in the nex t module. The structure of the dataparh un it has direct in­
puts to (he l K fl ip-flops.Note the correspondence between the modules of the HDL descrip­
tion and the struc tures in Figs. 8.9 . 8.10, and 8.12.

HDL Exa mple 8 .~

/I Structural description of design example (Figs. 8.9(a), 8.12)
module Design_Example_STR
( output [3: 0] A. /I V 2001 port syntax

output E, F,
inp ut Start, clock, reset_b

);

Controller_STR MO(clr_Af , seCE, c1r_E, setf , iner_A, Start, A[2], A[3]. clock,
reseCb );

Datapath_STR M1 (A. E, F, cICAJ, set_E, clr_E, setf, incr_A. clock):
endmodule

modul e Controller_STR
( output clr_A], set_E, clr_E, set] , incr_A,

Input Start, A2, A3, clock, resel_b
);

wire
parameter
wire

not (GO_b, GO);
not (G1_b, G1);

buf (incr_A, w2);
bUf (set] , G1);
not (A2_b, A2);

GO, G1;
S_idle = 2'bOO, S_l = 2'b01, S_2 = 2'b11;
w1, w2, w3;



Sectio n 8.6 HDl Descripti on of Design Exampl e 369

or (O_GO, w1, w2);
and (w1, Start, GO_b);
and (c1r_AJ , GO_b, Start);
and (w2, GO, G 1_b);
and (set_E, w2, A2);
and (clr_E, w2, A2_b);
and (0_G1 , w3, w2);
and (w3, A2, A3);
D_fIip_flop_AR MO(GO, O_GO, clock, reset_b);
D_fIip_flop_AR M1 (G 1, D_G1, d oCk, reseLb);

endmodule

/I datapath unit

module Oatapath_STR
( output 13: OJ A,
output E, F,
Input clr_A_F, seL E, c1r_E, seLF, incr_A, clock

):

JK_fIip_flop_2 MQ (E, E_b, sel_E, clr_E, clock);
JK_flip_flop_2 M1 (F, F_b, set_F, clr_A_F, clock);
Counler_4 M2 (A, iocr_A, d r_A_F, clock);

endmodule

II Counter with synchronous dear

module Counter_4 (o utput reg {3: OJA, Input incr, clear, clock);
always @ (posedge clock)
If (clear) A <= 0; else If (incr) A <= A + 1;

endmodu le

module O_fIip_flop_AR (0 , D, CLK, RST);
output 0 ;
input D, CLK, RST;
reg Q;

always @ (posedge e LK, negedge RST)
if (RST == 0) a <= l 'bO;
else Q <= 0 ;

endmodule

/I Description of JK fl ip-flop

module JK_flip_f1op_2 (a , a _not, J, K, ClK);
output Q , a _not;



370 Chapter 8 Design at the Register Transfer level

Input J, K, Cl K;
reg a;
ass ign a _not = - O:
always @ (posedgeClK)

case «J, K})
2'bQO: a <= Q ;

2'b01 : Q <= 1'bO;
2'b10: 0 <= 1'b1 ;
2'b1 1: 0 <= - 0 ;

endcase
end modu le

module t_Design_Example_STR;
reg Start, clock , reset_b;

wlre (3: OJ A;
wlre E, F;

II Instantiate design example

Design_Example_STR MO(A, E, F, Start , cloc k, reset_b);

II Describe stimulus waveforms

In itial #500 $fi nl sh; II Stopwatch
In iti al

beg in

reset_b =0;
Start =0;
clock = 0;

#5 reset_b = 1; Start =1;
repeal (32)

begin
#5 clock = - clock ; II Clock generator

.nd
.nd

In it ia l
$monltor ("A = %b E = %b F = %b time = %Od", A, E, F, $t1me);

endmodule

The struc tural description was tested with the lest bench thai verified the RTL description
to prod uce the results shown in Fig. 8.13. The on ly change necessary is the rep lacement of the
instant iation of the example from Design_ExampJe_RTL to Design_ExampJe_STR. The sim­
ulation results for DesignftampleflR matched those for Design_ExampJe_RTL. However,
a comparison of the two descriptions indicates that the RTI. style is eas ier to write and will lead
10 results faster if synthesis tools are available to auto matical ly synthesize the registers. the
combinational logic , and their interco nnections.



Section 8.7 Sequential Binary Multiplier 371

8 .7 SEQUENTIAL BINARY MULTIPLIER

Th is section introduces a second design example. It presents a hard ware algori thm for binary
mul tiplicat ion. propose s the register configuration for its implementation. and then shows how
to use an AS~tD chart to design darapath and irs controller.

TIle system we will examine multiplies two unsigned binary numbers.1be hardware algorithm
that was developed in Sectio n ~.7 to execute multiplication resulted in a combinational circuit mul­
tiplier with many adders and Al"'D gates. requiring a large area o f silicon for the implementation
of the algorithm as an integrated circuit. ln contra..t, in thi \ sectio n, a more efficie nt hardware
algori thm results in a seq uential mu ltiplier that uses only one adde r and a shift register. The sav­
ings in hardware and silicon area come about from a trade-off in the !>pace (hardwarej-tirne
domain. A parallel adde r uses more hardware. bUI forms its result in one cycle of the clock ; a
sequential adder uses less hardware. but takes multiple clock cycles to fonn its result.

The multiplication of two binary numbers Is done with paper and pencil by successive (Le..
sequential ) add itions and shifting. The proce ss is best illustrated with a numerical exa mple. Let
us multiply the two binary numbers lOl l! and 10011 :

23 1011 1 mult ipli cand

19 100 \1 multiplier

10 111

10111

ooסס0

ooסס0

1011 1
437 110110101 product

The proce ss consi..ts of successively addi ng and shifting copies o f the multiplicand . Succes­
sive bits o f the multiplier are examined. least significant bi t first . If the multiplier bit is I. the
mult iplicand is copied do wn; otherwise. n's are copied down. The numbers copied in sccces ­
she lines are shifte d o ne pos ition to the left fro m the previous number. Final ly. the numbers
are added and their sum forms the product. The product obtained from the multiplication of two
binary numbers of II bits eac h ca n have up to 2n bits. It is apparent that the operations of
addi tion and shifting are executed by the algori thm.

When the multiplication process is implemented with digi tal hardware. it is convenient [0

change the process slightly. First. we note that , in the context of synthesizing a seq uential rna­
chine. the add-and-shirt algorithm for binary multiplication can beexecuted in a single clock cycle
or over multiple clock cycles, On the one hand. a choice to form the produc t in the time span of a
single d ock cycle will synthesize the circuit of a parallel multiplier like the one discussed in Section
4.7. On the other hand. an R11. model of the algorithm adds shifted copies of the multiplicand to
an accumulated partia l product. The values of the multiplier. mu ltiplicand . and partial produc t are
stored in registers. and the operations of shifting and addin g their contents are executed under the
control of a stale machine. Among the many possibilities for distributing the effort of muluplica­
tion over mu ltiple clock cycles. we ....; 0 consider that in which only one partial product is formed
and accumulated in a single cycle of the clock. (One alternative wouldbe10 use additional hardware



372 Chapter 8 Design at the Register Transfer Level

to form and accumulate two partial products in a clock cycle. but this would require more logic
gates and either faster circuits or a slower clock.) Instead of providing digital circuits to store and
add simultaneously as many binary numbers as there are I 's in the multiplier. it is less expensive
to provide only the hardware needed to sum two binary numbers and accumulate the partial prod­
ucts in a register. Second, instead of shifting the multiplicand to the left, the partial product being
fonned is shifted to the right. This leaves the partial product and the multiplicand in the required
relative positions. Third, when the corresponding bit of the multiplier is 0, there is no need to add
all O's to the partial product, since doing so will not alter its resulting value.

Regist e r Configuration

A block diagram for the sequential binary multiplier is shown in Fig. 8. I4(a). and the register
configuration of the datapath is shown in Fig. 8.14(b). Themultiplicand is stored in register B,

Rt ady .\lultip ficand Multiplit,

Sra,t

Q O

(. )

9

Registe r B (Multiplicund) I Register P(Counlt r )

lnr~Vt An l l l' 1'! 0101 01. . .... ,. .- " ' .'

7 , 0

+

16 15 8 8 7 0
oI°I0 I0 0101010 010 I0I, 1o11 1'1 II

C Register A (Sum) Register Q (Multipfitr)

1
(b)

FIGURE 8.14
(a) Block diagram and (b) datapath of a binary mul tiplier



Section 8.7 Sequential Binary Multiplier 373

the multiplier is stored in register Q, and the partial product is formed in register A and stored
inA and Q. A parallel adder adds the contents of register B to register A. The C flip-flop stores
the carry after the addition. The counter P is initially set to hold a binary number equal to the
number of bits in the multiplier. This counter is decremented after the formation of each par­
tial product. When the content of the counter reaches zero. the product is fanned in the dou­
ble register A and Q, and the process stops. The control logic stays in an initial state until Stan
becomes I . The system then performs the multiplication. The sum of A and B fonn s the n most
significant bits of the partial product, which is transferred toA . The output carry from the ad­
dition, whether 0 or I , is transferred to C. Both the partial product in A and the multiplier in
Q are shifted to the right. The least significant bit of A is shifted into the most significant po­
sition of Q, the ca rry from C is shifted into the most significant position of A, and 0 is shift­
ed into C. After the shift-right operation, one bit of the partial product is transferred into Q
while the multiplier bits in Q are shifted one position to the right. In this manner, the least
significant bit of regis ter Q, designated by Q[ O] , holds [he bit of the multiplier that must be
inspected next . The control logic determines whet her to add or not on the bas is of this input
bit. The control logic also receives a signal, Zero, from a circuit that checks counter P for zero.
Q[O]and Zero are status inputs for the control unit. The input signal Start is an external con­
trol input. The outputs of the control logic launch the req uired opera tions in the reg isters of
the da tapath unit.

The interface between the controller and the datapath consists of the status signals and the
output signals of the controller.The control signals govern the synchronous register operations
of the datapath. Signal loadregs loads the internal registers of the datapath, Shift_regs causes
the shift register to shift, Add]egs forms the sum of the multiplicand and register A, and
Deer_P decrements the counter. The controller also forms output Ready to signal to the host
environment that the machine is ready to mult iply. The cor nenrs of the register holding the
product vary during execution. so it is useful to have a signal indicating that its contents are
valid. Note, again, that the slate of the control is not an interface signal between the control unit
and the datapath . Only the signals needed to control the datapath are included in the interface .
Putting the state in the interface would requ ire a decoder in the datapath. and require a wider
and more active bus than the control signals alone. Not good.

ASMD Chart

The ASMD chan for the binary multiplier is shown in Fig. 8.15. The intermediate fonn in
Fig. 8.15(a) annotates the ASM chart of the controller with the register operations, and the
completed chart in Fig. 8. 15(b) identifies the Moore and Mealy outpu ts of the controller.
Initially. the multip licand is in B and the mult iplier in Q. As long as the circuit is in the ini­
tial sta te and Start = 0, no action occurs and the system remains in state S_idle with Ready
asserted. The mult iplication process is launched when Start = I. Then , (I) control goes fo
slate S_add. (2) register A and carry flip-flop C are cleared to 0, (3) registers Band Q are
loaded with the multiplicand and the multiplier, respectively, and (4) the sequence counter
P is set to a binary number n. equal to the number of bits in the mult iplier. In Slate S_add,
the multip lier bit in Q[OJ is checked. and if it is equal to I , the multiplicand in B is added to
the part ial product in A. The carry from the add ition is transferred to C. The part ial product



374 Chapter 8 Design at t he Register Transfer Level

(.)

P <- P- l

IC, A. QI<- IC,A. QI » I

(bJ

Slart

IC, AI < - A+ B
Addmull iplicund
/0 shifted sum

p < .. P-l Decrement cour uer

.
Q/O/'r -- -,/

"-..... IC, A. Ql <- IC, A, QI » 1

i i "'\.. "<, 17.bir r,gisle, shifts to the
/? right by one bit

resecb

FIGURE8 .15
ASMD cha rt for binary multi plier

in A and C is left unchange d if QIO) = O. The counter P is decremented by I regardless of
the value of Q/O}, so Deer_P is formed in slate S_odd as a Moore output of the controller.
In both cases, the next state is S-.shift. Registers C.A. and Q are combined into one composite
register CAQ. denoted by the concatenation {C. A. Q}. and its contents are shifted once to
the righ t to obtain a new partial product. This shift operation is symbolized in the flowchart
with the Verilog logical right-shift operator. > >. It is equivalent to the following statement
in register transfer notation:

Shift right CAQ. C-O



Section 8.7 Sequential Binary Multiplier 375

In terms of individual register symbols. the shift operation can be described by the following
register operations:

A-shr A,A n_t-C

Q- shrQ,Qn_t-AO

C~ O

Both registers A and Q are shifted right. The leftmost bit of A, designated by An- J, receives
the carry from C. The leftmost bit of Q, or Qn- l' receives the bit from the rightmost position
of A in Ao• and C is reset to O. In essence, this is a long shift of the composite register CAQ
with 0 inserted into the serial input, which is at C.

The value in counter P is checked after the formation of each partial product. If the contents
of P are different from zero, status bit Zerois set equal to 0 and the process is repeated to fonn
a new partial product. The process stops when the counter reache s 0 and the controller' s status
input Zero is equal to I. Note that the partial product fann ed in A is shifted into Qone bit at a
time and eventually replaces the multiplier. The final product is available in A and Q. with A
holding the most significant bits and Q the least significant bits of the product.

The previous numerical example is repeated in Table 8.5 to clarify the multiplication process.
The procedure follows the steps outlined in the ASMD chart. The data shown in the table can
be compared with simulation results.

The type of registers needed for the dat a processor subsys tem can be derived from the
register operations listed in the ASMD chart. Register A is a shift register with paralle l load to
accept the sum from the adder and must have a synchronous clear capab ility to reset the reg­
ister to O. Register Q is a shift register. The counter P is a binary down counter with a facility

Ta b le 8 .5
Num~rkaf Exampf~ For Binary Multlpll~r

Multiplicand B = 10111 2 = 17H = 2310 Multiplier Q = 10011 2 = 13H = 1910

C A Q p

Multiplier in Q U ()(J()()() 10011 101
Qo = I ; add B IJllil
First partia l product 0 lOl l! 100
Shift right CAQ 0 0 1011 nooi
Qo = t; addB IJllil
Second partial product I 00010 011
Shift right CA Q 0 10001 01100
Qo = 0; shift right CAQ 0 01000 lOlI O 010
Qo = 0; shift right CAQ 0 00100 01011 001
Qo = I; addB IJllil
Fifth partial product 0 11011
Shift right CA Q 0 01101 1010t 000
Finalproductin AQ = 01 101101012 = Ib5H



376 Chapter 8 De sig n at the Register Transfer l e vel

to parallel load a binary constant. The C flip-flop must be designed to accept the input carry
and have a synchronous clear. Registers B and Q need a para llel load capability in order to re­
ceive the multi plican d and multiplie r prior to the start of the multiplication process.

8.8 CONT ROLlOGIC
The design of a digital system can be divided into two parts : the design of the register trans­
fers in the datapa rb unit and the design of the control logic of the co ntrol unit. The control

logic is a finite slate machine; its Mealy- and Moore-type ou tputs control theopera tions of the
datapath. The inputs to the control unit are the primary (external ) inputs and the interna l sta­
tus signals fed back. (rom the datapa th to the controlle r. The design of the system can be syn­
thesized from an RTL description derived from theASMD chan. Alternatively, a manual design
must derive the logic governing the inpu ts to the flip-flops holding the state of the contro ller.
The information needed to fonn the state diagram of the co ntroller is already co ntained in the
ASMD chart. since the rectangular bloch that designate stale boxes are the states of the sequen­
tial circuit. The diamond-shaped blocks that designate decision boxes detennine the logical con­
ditions for the next state transition in the state diagram.

As an example. the contro l state diagram for the binary multiplier developed in the previ­
ous section is shown in Fig. 8.I6(a). The information for the diagram is taken directly from the

Zero - I

Start - 0

Z ero - 0

(. )

State Transition Register Operations

From III
S_idle Initial nate

S_idle S_add A <= O. C <- O. P < - dp_"'idlh
S_add SJh;ft p <=p - !

if (QIOn then (A <- A + B. C <- C.....)

SJhijr shifl right ICAQI. C <'" 0

(b)

FIGURE 8.16
Control specificatio ns for binary multiplier



Section 8.8 Control l ogic 377

ASMD chart of Fig . 8.15. Th e three states S_idle through S_shift are taken from the rectangu ­
lar state boxe s. The input s Star t and Zero are taken from the diamond-shaped decision boxe s.
The register transfer operations for each of the three slates are listed in Fig. 8.16(b}and are taken
from the correspon ding state and conditional boxes in the ASMD chan . Establishing the state
transit ions is the initial foc us. so the outputs o f the contro ller are not sho wn.

There are two distinct aspec ts with which we have to deal whe n implementing the contro l
logic : Establi sh the required sequence of states and provid e signals to control the register op­
erations. The sequence of slates is specified in the ASMD chan or the state diagram. The sig­
nals for controlling the operations in the registers are specified in the register transfer statements
annotated on the ASMD chart or listed in tabu lar format. For the multiplier. these signals are
toadregs (for para llel loading the regis ters in the datapath unit). Decr.P (for decrementing
the counter) . Add_regs (for adding the multiplicand and the partial product). and ShiftJegs
(for shifting register CAQ) . The block diagram of the control unit is shown in Fig. 8.J4(b}.
Th e inputs to the controller are Start. Q/OJ. and Zero. and the outputs are Read)'. Loadr egs,
Decr.P, Addr e gs, and ShifCre gs. as specified in the ASMD chart. We note that Q/Oj affects
on ly the outp ut of the controller. not its state transitions. The machine tran sitions from S_add
to S_shift unconditionally.

An important step in the design is the assignment of coded binary values to the states. The sim­
plest assignment is the sequence of binary numbers . as shown in Table 8.6. A similar assignment
is the Gray code. according to which only one bit changes when going from one number to the
next. A state assignment often used in control design is the one-hot assignment. Th is assignment
uses as many bits as there are stales in the circuit. At any given time. only one bit is equa l to J
(the one that is hot) while all others are kept at 0 (all cold). This type of assignment uses a flip­
flop for each state. Indeed. one-hot encoding uses more flip-flops than other types of coding. but
it usually leads to simpler decoding logic for the next stale and the output of the machine. Because
the decod ing logic does not become more complex as stales are added to the machine. the speed
at which the machine can operate is not limited by the time required to decode the state.

Since the controller is a sequential circuit. it can be designed manually by the sequential logic
procedu re outlined in Chapter 5. However. in most cases this method is d ifficult to carry out
manually because of the large number of states and input s that a typical control circuit may have.
As a consequence. it is necessary to use specialized methods for contro l logic design that may
be considered as variations of the classical seq uential logic method. We will now present two
such design procedure s. One uses a sequence register and decoder. and the other uses one flip­
flop per state. Th e method will be presented for a small c ircuit. but it applies to larger circ uits
as well. Of course. the need for these methods is eliminated if one has software that auto mat­
ically synthesizes the ci rcuit from an HDL description .

Tab le 8 .6
State Anlgnment for Control

State

S_idle
S_add
SJhjft

Binary

00
0 1
10

Gray Code

00
0 1
II

One-Hot

001
0 10
100



378 Cha pte r 8 Desig n at the Reg ister Transfer Level

Seque nce Register a nd Decoder

The sequence-register-and-decoder (manual) method. as the name implies. uses a regi ster for
the control states and a decoder to provide an output corresponding 10 eecb of the states . (The
decoder is not needed if a one -hot code is used.) A regi ster with n flip-fl ops can have up to 2"
states. and an n-to-2"· line decoder has up to 2" outputs. An a-bit sequence register is e~sentially
a circuit with n flip-flops. together with the associated gates that effect their state trans ition s"

The AS~1D chan and the state diagram forthe controller of the binary muttiplier bave three
states and two inputs. (There is no need to consider QIO}. )To implement thedesign with a se­
quence register and decoder. we need two flip-flops for the register and a rwo-to-four-liee de­
coder. The output s of the decoder will fonn the Moore-type outputs of the controll er directly.
The Mealy-type outputs will be formed fro m the Moore outputs and the inputs.

The state tab le for the finite state machine of the controller is shown in Table 8.7. It is de­
rived directly from the ASMD chart of Fig. 8.15(b) or the state diagram of Fig. 8.16(a ). We des­
ignate the two flip-flops as G l and Go and assign the binary states 00. 0 1. and 10 to S_idlt'.
S_odd. and S_shi/t. respectively. Note that the input col umns have don ' t-care entries whenev­
er the input variab le is not used 10 determine the next state. Th e outputs of the control circuit
are designated by the names give n in the ASMD chart . The particular Moore-type output vari ­
able that is equal to I at any give n time is determined fro m the equivalent binary value of the
present stale. Those output variables are shaded in Table 8.7. Thus. when the present state is
GIGO = 00. output Ri'ad)' must be equal to 1. while the othe r outputs remain at O. Since the
Moore-type outputs are a function of only the presen t state. they can be generated with a de­
code r circuit having the two inputs G1 andGo and using three of thedecoder outputs To through
T2 . as shown in Fig. 8. 17(a). whic h does not include the wiring for the state feedb ack .

The state machine of the controller can bedes igned from the state table by means of the clas­
sical procedure presented in Chapter 5. This example has a smal l number of states and inputs.
so we could use map!' to simplify the Boolean functions. In most con trol logic applica tions. the

Table 8 .7
Statlt Tab/It for Control CIrcuit

PreJent Next
State InputJ State

• • a,.. r
~

t .. t, .' ,
PreJent-St ate -e il' l;

~ g t
Symbol G, Go Start Q[O} Zero G, Go - Q ~ ~

S_idle 0 0 0 X X 0 0 0 0 0 0
S_idle 0 0 I X X 0 I I 0 0 0
S_aJJ 0 I X 0 X I 0 0 0 I 0 0
S_aJJ 0 I X I X I 0 0 0 I 0
S_shift I 0 X X 0 0 I 0 0 0 0 I
S_shift I 0 X X I 0 0 0 0 0 0 I



Section 8.8 Control Logic 379

R"',
5'""--j-<Y

QIOI - -+--1

Zm-- - -1

( . )

R"',

..-
~~'\~

NUl 51tU~ Logic:,...._._.._._.._._ ,

I

Zero __-+---'

i....._.._ __._.._.._ ~

(bl
FIGURE 8.17
logic diagram of control for binary multiplier using. sequence register and decoder



380 Chapter 8 Design at the Register Tran sfer Level

number of sta tes and inputs is much larger. In general. the app lication of the classical method
r"nIu.irei'> an e ltcc ssi vc amount o f .....ork to obtain the l im plified input equalio ns fo r !he flip-flO(K
and is prone to error. The des ign can be simplified if we take imo cces toereuce lhe fllCl thai

the decoder outputs are ava ilable for use in thedesign. Instead of using flip-flop outputs as the
present-slat e condition s, ,,'e use meoutputs ofthe decode r to tndiaue tM presem-suur condi­
tion ofthe s~qu~ntjal circuit. Moreover, instead of using maps to simp lify the flip-flop equa­
tions. we can obta in the m directly by inspection of the stale tabl e. For example. from the
nelt t-..t.le condition<; in tbe sta te table . we fInd thai the nexl stale of G 1 is equal to I ....'hen the
present state is S_add and is equal to 0 whe n the pre sent slate is S_id/~ or SJhift. These con­

ditions can be specified by the equation

where DCI is the D input of flip- flop 6 1' Simi lar ly. me D input of Go is

DG4J = ToStart + T2 Zero'

Whe n deriving input equations by inspection from the stare table. we canno t be sure mat the
Boo lean functions have bee n simplified in the best possible way. (Synthes is tool s take care of
th is detai l automatically.] In general , it is adv isabl e to analyze the ci rcuit 10 ensure that the
equations derived do indeed produ ce the req uired state tran sitions.

The logic diagram of the control circuit is drawn in Fig . 8.17(b ). It consists of a register ....ith
two flip-flops G, and Go and a 2 x 4 decoder. The outputs of the decoder are used to gener­
ate the inpu ts to the next -state logic as well as thecontrol ou tputs. Tbeoutpu ts of the controller
shou ld be connected to the datapath to acti vate the req uired register ope ratio ns.

One-Hot Des ign (One Flip-Flop per State)

Another method of contro l logic des ign is theone-hoi assignment. which results in a sequen­
tial circuit ....-ithone ni p-flop per state. Only one of the flip-flops contains a I at any time: all
others are reset to O. The single I propagates from one flip-flop to another unde r thecontrol of
decision logic. In such a configura tion. each nip-flop represents a Slate tha t is present only
when the control bit is transferred to it.

Thi s method uses the maximum number of flip-fl ops for the sequen tial circuit. For exam­
ple . a sequentia l circ uit with 12states requires a minim um of four nip-flops. By contrast, with
the met hod of one ni p-flop per state. the circuit req uires 12 flip- flops. one for each sta te . At
first glance. it may seem thai this method would Increase sys tem cost, since more flip-fl ops are
used . But the method offers some advan tage s that may not be apparent. One ad vantage is the
simplicity with which the logic can bedesigned by inspec tion of the ASMD chan or the state
diagram . No stare or excitation tables are needed if D·type fli p-flops are employed. The one­
hot method offers a sa vings in design effort. an increase in operational simplicity, and a pos­
sible decrease in the total number of gates . since a decoder is not needed.

Thedesign procedure willbe demonstrated by obtaini ng the cootrol circui t speci fied by thestate
diagram of Fig. 8.I6(a) . Since there art three stales in the state diagram. we choose three D nip­
flops and label their ootputs Go- 6 ). andG2•corrrsponding lo S_wk . S_add. andS_shift. respec­
tively.The input equations for setting each flip-flop to I are determined from thepresen t slate and



Sect ion 8.8 Control logic 381

the input condit ions along the corresponding directed lines going into the stale. For example. DGO.
the input to flip-flop Go. is set to I if me machine is in stale Go and Start is nOI asserted. or if the
machine is in state Gz and lira is asserted. These conditions are specified by the input equation:

DGo = Go Starr' + G2 Z ero

In fact. the condition for setting a flip-flop to I is obta ined directly from the state diagram .
from the condition specified in the dire cted lines going into the corresponding flip-flop state
ML>ed with the previous flip-flop slate. If mere is more than one directed line going into a slate.
all conditions must beORed . Using this procedu re for the other three flip-flops. we obtain the
remaining input equations:

DGl = Go Start + Gz Z ero'

tsca= G,

The logic diagram of the one-hot controller (with one flip-flop per state) is shown in Fig. 8.18.
The circuit consists of three D flip-flops labeled Gothrough G2, together with the associated gates

Start

QIO}

Zero

d ock

~&;%i~
Read)'

I?"I
IV ;}t~~::

il ~
Loedregs

-I f!!i-;iJ G.
0 ~

-

W:~ A ddJl'gs! ~'4'l{:1' , , G, "1 ,'0'&
-j) =liY JP D';::::WA\

:{Sjjddf, Decr_P

~il

L I1>''''''j''?1{f,'
Shl!/J fgs

"J,::'" ,,:.,:,):
(S~hjft) G,
'-: '6'j7.~iif:

~1;iA~Fjti~';:
,...... ,

~:r,:R.rr ,t, ,

FIGURE 8 .18
logIc diagram for one -hot state controller



382 Chapter 8 Desig n at the Register Transfer Level

speci fied by the input equations" Initially. flip-flop Go must be set to 1 andall other flip-flops
must be reset to O. so that the nip-flop representing the initial state is enabled. This can bedone
by using an asynchronous preset on flip-flop Go and an asynchronous clear for the other nip­
flops. Once started , the controller with one flip-flop per stare will propagate from one state to
the other in the proper man ner. Only one flip-fl op will be set to I with each clock edge: all
othe rs are reset to O. beca use the ir D inputs are equal to O.

8 . 9 HD L DESCR I PT IO N OF 8 1NARY MULTIPLIER

A second example of an HDLdescription of an RTLdesign is given in HDL Examp le 8"5. The
example is of the binary multiplie r de signed in Section 8.7. For simplicity. the entire descrip­
tion is " flattened" and encapsulated in one modu le. Comments will identify the co ntroller and
the data path . The first part of the description declare s all of the inputs and outputs as specified
in the block diagram of Fig. 8.14(a) . The machine will beparameterized for a five-bit data path
to enable a com pari"ion between its simulation data and the result of the mul tiplication with the
numerical example listed in Table 8.5. The same model ca n be used for a datapath having a
different size merely by changing the value of the parameters . The second part of the descrip­
tion declares all regi...ters in the contro ller and the dara path . as well as the one-hot encoding of
the Slates. The third pan speci fies implicit combinational logic (continuous assignment state ­
men ts) for the concatenated register G4.Q. the am status signal. and the RuJd)"output signal.
The continuous assignments for a m and R~ad}' are acco mplished by assigning a Boolean e x­
pression to their "in' declarations. The next sectio n describes the control unit. using a single
edge-sensiu ve cyclic beha vior to describe the state transition s. and a level-senslu ve cyclic be­
havior to describe the co mbinational logic for the next state and the ou tputs. Again. note tha i
defaul t assign ments are mad e to n~xt_slate. Load_"8S. D~cr_P. Add_" 8S. and Shifcngs.
The subsequent logic of the CMe statement assi gns the ir value by exception. The state tran si­
tions and the output logic are written directly fro m the AS~m chan of Fig. 8.15(b J.

The datapath unit describes the regi ster operations within a separate edge-sensiti ve cycli c
behavior. {For clarit y. separate cycl ic behaviors are used; we do not mix the descript ion of the
datapa th with the desc ription of the controller.} Each control input is decoded and is used to
specify the assoc iated operations. The addition and subtraction operations will be implement­
ed in hardware by combinational logic. Signal Lo(UC" 8Scauses the counter and the othe r reg­
isters to be loaded with their initial values. etc. Because the controller and datapath have bee n
partitioned into separate units. the control signals completely specify the beha vior of the data ­
path; explicit inform ation about the state of the controller is not needed and is not made ava il­
able to the dataputh unit.

The next-state logic of the co ntroller includes a default case item to direct a synthesis tool
to map any of the unused codes to S_jdf~. Th e default case item and the default assign ments
preceding the cast' statement ensure that the machine will reco ver if it somehow enters an un­
used state. They also prevent unintentional synthesis of latches. (Remember. a syn thesis tool
will synthesize latches when what was intended 10 be combinational log ic in fact fail s to com­
pletely spec ify the input-output function of the logic.)



Section 8.9 HOt Description of Binary Multiplier 383

HDL Exam ple 8.5

1/Set to width of data pathdp_width = 5;
Product;
Ready;
Multiplicand, Mulliplier;
Start , clock, reset_b;

[2*dp_width -1: 0]

module Sequential_Binary_Multiplier (Product. Ready, Multiplicand , Multiplier. Start,
clock , reset_b);
1/ Default configuration: five-bit datapath

parameter
output
output
Input
Input

BC_size = 3; 1/Size of bit counter

SJdle = 3'b001, 1/one-hoi code
S_add = 3'b010 ,
S_Shifl = 3'b100;
stale , next etete:

If Sized for datapathA, B, O:
c;
P;
Load_regs, Decr_P . Add_regs, Shift_regs;

reg [2: OJ
reg [dp_widlh -1: OJ
reg
reg [BC_si ze -1 : OJ
reg

parameter
parameter

If Miscellaneou s com binational logic

Product = (A , a};
Zero = (P == 0); If coun ter is zero
1/ Zero = - IP; 1/alternative
Ready = (sla te == SJ dle); If controller status

assign
wire

w ire
If control unit

always @ (posedge clock , negedge reset_b)
If (- reseCb) state <= SJdle; el se slate <= next_stale;

begin If (Slart) next state = S_add: Load_regs = 1; end
begin next_state = S_shift: Oecr_P = 1: If (0(0]) Add_regs = 1; end
beg in Shift_regs =1; if (Zero) nexCstate = SJdle:
els e next_Sla te = S_add ; end

next_state =SJdle;default:

always @ (state . Start, 0[0], Zero) begin
next_state = S_id le ;
Load_regs =0:
Oecr_P =0:
Add_regs = 0;
Shift_regs =0:
case (stale)

SJdle:
S_add :
S_shift :



384 Cha pter 8 Design at the Register Transfe r level

endcase
end

1/datapath unit
always @ {posedge clock)begln

if (Load_regs) begin
P <= dp_widlh;
A <: O;
C <:0;

B <=Uul!;pl;cand:
a <'" M ult ip l ie r :

end
If (Add_regs) {C. A} <= A + B;
If (Shift_regs) {C. A. O} <= {C. A. O} » 1;

if (Deer_PI P ( = P·1;
end

endmodule

Test Ing the Multiplie r

HDl Example 8.6 shows a test bench for testing the multiplier. The inputs and outputss are
the same as those shown in the block diagram of Fig. 8.14(a) . It is naive to conclude that
an HDLdescription of a system is correct on the basis of the output it genera tes under the
application of a few input signals. A more strategic approach to testing and verification
exploits the partition of the design into its datapath and control unit. Th is partition supports
separate verificatio n of the controller and the datapath. A separate test bench can be devel­
oped to verify that the dataparh executes each operation and genera tes status signals cor­
rectly. After the daraparh unit is verified. the next step is to verify thai each control signal
is formed correctly by the control unit . A separate test bench can verify that the control unit
exhibits the complete functionality specified by the ASMD chart (i.e.• that it makes the cor ­
rect state transitions and asserts its outputs in response to the external inputs and the status
signals).

A verified control unit and a verified datapath unit together do not guarantee that the sys­
tem will operate correctly. The final step in the design process is to integrate the verified mod­
els within a parent module and verify the functionality of the overall machine. The interface
between the controller and the dataparb must be examined in order to verify that the pons
are connected correctly. For example. a mismatch in the listed order of signals may not be
detected by the compiler. After the datapath unit and the control unit have been verified. a
third test bench should verify the specified functionali ty of the complete system. In practice,
this requires writing a comprehensive test plan identifying that functionality. For example.
the test plan would identify the need to verify that the sequential multiplier asserts the sig­
nal Ready in state S_idle. The exercise to write a test plan is not academic: The quality and
scope of the test plan determine the worth of the verification effort. The test plan guides the
development of the test bench and increases the likelihood that the final design will match
Its specification.



II Set to width of oatapem
II Output from multiplier

Section 8.9 HOt Description of Binary Multiplier 385

Testin g and verifying an HDL mod el usually requires access to more info rmation than the
inputs and outputs of the machine. Knowl edge of the slate of the control unit , the control sig­
nals, the status signals, and the intern al registers of the datapath might all be necessary for
debugging. Fortunately, Verilog provides a mechanism to hierarch ically de-reference identifiers
so that any varia ble at any le vel of the design hierarc hy can be visible to the test bench .
Proced ural sta tements can display the informat io n req uired [0 suppo rt efforts to debug the
machine. Simulators use thi s mechanism to display waveform s of any variable in the design
hierarchy. To use the mechanism . we refe rence the variable by its hierarchical path name. For
exa mple. the reg ister P within the datapath unit is not an output pan of the mult iplier. bUI it can
be referenced as MO.P. Th e hierarchi cal path name consists of the sequence of mod ule identi­
fiers or block names, separated by periods and spec ifying the location of the variable in the
design hierarch y. We also note that simulators commonly have a graphical user interface that
displays all levels of the hierarchy o f a design.

The first te st be nch in HOL Ex ample 8.6 uses the sys tem task $strobe to d isp lay the re­
su lt of the co mputatio ns . This task is similar to the $d isp la)' and $m onitor tasks explained
in Section 4 . 12. T he $s t ro be system tas k pro vides a synchronization me chani sm to ensure
tha t data are di spl ayed onl y after all assignments in a given time step are exe cuted. Thi s
is very usefu l in synchro nous seq uential ci rcuits , where the time step begins at a clo ck
edge and mul tipl e assig nme nts may occur at the same time step o f simulation. Whe n the
system is synchronized to the po sitive ed ge of the clock . using $st ro be afte r the always
@ (posedge clock) stateme nt ensures that the display sho ws value s of the sig nal aft er the
clock pulse.

The test bench modu le t_Sequentia(]1ina1)'_Multip/ier in HOL Exam ple 8.6 instantiates
the module Sequential Binary_Multiplier of HDL Example 8.5. Both mod ules must be incl uded
as source files when simulating the multiplier with a Verilog HDL simulator. The res ult of thi s
simulation displays a simulation log with num bers identica l to the ones in Tab le 8.5. The code
includes a second test bench to ex haustively multiply five-bit values of the multiplicand and
the multiplier. Waveforms for a sample o f simulatio n result s are shown in Fig. 8. 19 . T he nu­
meri cal values of Multiplicand. Multiplier. and Product are d isplayed in decimal and bexa­

decim al formats. Insight can be ga ined by studying the displ ayed waveforms of the control
state. the control signals, the status signals. and the register operations. Enhance ments 10 the
multiplier and its test bench are co nsidered in the problems at the end of this chapter. In this
exampl e, 1910 X 2310 = 4371°' and 17H + ObH = 02Hwith C = I. No te the need for the
carry bi t.

MDL Exam ple 8.6

/I Te st bench for the binary multiplier
module t_SequenliaL Binary_Multiplier;
parameter dp_width = 5;
wire [2-dp_width -1: 0] Prod uct ;
wire Ready;
reg (dp_wldth -1: 0] MUltiplicand, Multiplier, II Inputs 10 multiplier
reg Start. clock , re set_b;



386 Chapter 8 Desig n at the Register Transfer Level

6,51)15,

dad~In_ ..b

SIan

J/(Jl~{2: 01
, 1 , , 1 1 4 12 1 4 12 14 2 , 1 2 I
= ,

Lc<Jd-,~gJ
~ ~ ~ ~

D~crY
' io..

~ ~ ~~

= ~
Add_r~gs

~ =' ~ShiftJ~gs

P{1: 0{ 0 , 4 3 I z I 1 0 s
Zm '--

~
8 /4: 0/ I . ':=".. t- 17 } 18

A{4:OJ l odl OO I 17 0/> ,nit 11 I .. I ().I l i b OJ 00
.

C :$.~ .-.

Q/4: 0{ 0' 13 19 I Oc I 16 I .. ts 13

MllffipfinvuJ/4: 0/ I . I 17 I 18

MlIllip/icafld{4: O{ 22 1 ( 21)-- 1 u
<,

MlIllipli~r{4: 0/ 13 <,

MlIllipli~r/": 0/ I. <,
PrQdUCl/ I): 0/ I " 013 23 179 059 22, IIb-

~
~ lb5 013

ProduCl/ l): 0/ '" I. '55 377 IJ9 55' 278 875i(JJ7 I .

R~ady = ..r--L-

FIGURE8.19
Simulation wavefonns for one-hot sta te controller



Section 8.9 HDl Description of Binary MUltiplier 387

II Instantiate multiplier
SequenliaL Binary-Mulliplier MO(Product, Ready, Multiplicand, Multiplier, Start, clock,
rese,-b);

II Generate stimulus waveforms
Initial #200 $f1nlsh ;
Initia l
begin

Start =0;
reset_b::: 0;
#2 Start = 1; reseCb ::: 1;
Multiplicand = 5'b10111; MUltiplier = 5'b10011;
#10 Start ::: 0;

end
Initial

begin
clcck e 0;
repeat (26) #5 clock = -ciock:

end
1/Display results and compare with Table 8.5
always @ (posedge Clock)
$st robe r C=%b A=%b O=%b P=%b time=%Od",MO.C,MO.A,MO.O,MO.P, $tlme);

endmodule

Simulation log:
C=O A=ooooO 0=1 0011 P=101 time=5
C=O A=10111 0 =1001 1 P=100 Ijme=15
C=O A=01011 0 =11001 P=100 time=25
C=1 A=00010 0=11001 P=011 lime=35
C=O A=10001 0 =01100 P=011 time=45
C=O A=10001 0=01100 P=010 lime=55
C=O A=01000 0=10110 P=010 time:::65
C=O A=01000 0=10110 P=001 lime=75

C=O A=001 00 0=01 011 P=001 time=B5
C=O A=11011 0 =01011 P=OOO time=95
C=O A=01101 0=10101 P=OOO tlme=105
C=O A=011D1 Q:::10101 P=OOD time=1 15
C=O A=01101 0:::10101 P=OOO time=125

r Test bench for exhaustive simulation
module t_Sequential_Binary_Multiplier;
parameter dp_wldth = 5; II Width of datapath
wire f2 * dp_width -1: OJ Product;
wire Ready:
reg [dp_width ·1: OJ Multiplicand, Multiplier;
reg Start, clock, reset_b;



388 Chapter 8 Design at the Register Transfer Level

SequentiaLBinary_Multiplier MO(Product, Ready. Multiplicand. Multiplier, Start,
clock . reset_b);

Ini ti al #1030000 Sflnlsh ;
Initial beg in dock =0; #5 forever #5 clock =-cocc end
Initial fork

reseC b = 1;
#2 reseCb =0;
#3 reset_b = 1;

join
Ini tial begi n #5 Start = 1; end
Init ial beg in
#5 Multiplicand =0;

Multiplier'" 0;
repeat (32) #10 begin Multiplie r =Multip lier + 1;

repeat (32) @ (posedge MO.Ready) 5 Multiplicand '" Multiplicand + 1:

end
end

endmodule
"/

Behavioral Description of a Paralle l Multiplier

Structural modeling implicitly specifies the functionality of a digital machine by prescribing
an interconnect ion of gate-level hard ware units. In this fonn of mode ling , a syntbesis tool per­
forms Boolean optimization and translates the HDL description of a circuit into a Mdist of
gate s in a particular technology, e.g ., CMOS. Hardware design al ibis leve l often requires clev­
emess and acc rued experience. It is the most ted ious anddetailed form of modeling. In con­
trast, behavioral RTL modeling speci fies functi onality abstractly, in terms of HDL operators.
11K: RTI. mode l does not specify a gate-level implementation of the registers or the logic to con­
trol the operations that manipulate their conrents-c-rhose tasks are acco mplished by a synthe­
sis too l. RTL modeling implicitl y schedules operations by eltplic itly ass igning them 10 clock
cycles. The most abstract form of behavioral model ing describes only an algori thm. withoul any
referen ce to a physical implementation , a set of resources. or a schedule for the ir use. Thus.
algorithmic modeli ng allows a designer 10 explore trade-o ffs in the space (hardware ) and lime
domai ns, trading processing speed for hard ware complexity.

HDL Example 8.7 presents an RTL model and an algorithmic model of a binary multiplier.
Both use a level-sensit ive cyclic be havior. The RTI.. model expresses the functionalit y of a
multipli er in a single statement. A synthesis tool will associate with the multiplication operator
a gate -level circuit equivalent to thai shown in Section 4.7. In simulation. when either the mul­
tiplier or the multiplicand changes, the produ ct will be updat ed. The time required to form the
prod uct will depe nd on the propagation delays of the gales available in the library of standard
cells used by the synthesis tool. The socood model is an algorithmic descriptionof the multiplier.
A synthesis tool wiU unroll the loop of the algorithm and infer the need for a gale-level circuit
equivalent 10 thar shown in Section 4.7.



Section 8.9 HDl Description of Binary Multiplier 389

Be aware thai a synthesis tool may not be able 10 synthesize a given algorithmic descrip ­
tion. even though the associated HDL model will simulate and produce correct results. One
difficulty is that the sequence of operations implied by an algorithm might not be physicall y
realizable in a single cloc k cycle. It then becomes necessary 10 distribute the operations over
multip le clock cycles . A 1001 for synthesizing RTL logic will not be able to automatically
accomplish the req uired distribution of effort. but a tool that is designed to synthesize algo­
rithms should be successfu l. In effect. a behavioral synthesis tool wou ld have to allocate the
regis ters and adde rs to implement multipl ication . If only a single adder is to be shared by all
of the operations that fonn a partial sum, the activity must bedistributed over multiple clock
cycles and in the correct sequence. ultimately lead ing 10 tbe sequential binary multiplier for
which we have ex plicitly designed the co ntroller for its datapath. Behavioral synthesis tools
require a d ifferent and more sophisticated style of modeling and are not within the scope of
this text.

HDL Exa mple 8.7

/I Behavioral (RTl ) description of a parallel multiplier (n = 8)
modut e Mult (Product, Multiplicand. Multiplier);

input [7: OJ MUltiplicand, Multiplier;
output reg (15: OJProduct;
always @ (Multiplicand, Multiplier)

Product =Multiplicand · Multiplier;
endmodule
modul e Algorithmic_Binary-Multiplier #(parameter dp_width =5) (

output 12°dp_width -1: OJProduct. input (dp_width -1: OJMUltiplicand, Multiplier);
reg [dp_width -1: 0] A, S, 0 ; /I Sized for datapath
reg C;
Integer k;
assign Product = {C, A, O};
always @ (Mulliplier. MUltiplicarcl) begin

o = Multiplier;
B = Multiplicand;
C =0;
A = 0;
for (k = 0; k <= dp_width -1; k = k .. 1) begin
If (O(OJI (C, A) =A + 8;
{C. A, 0 ) ={C. A. O}» 1;

end
end

endmodule
module L Algorithmic_Binary_Multiplier;
parameter dp_width = 5; /I Width of datapath
wi re 12' dp_width -1: OJ Product;
reg Idp_width -1: OJ MUltiplicand, Multiplier;
integer Exp_Value;



390 Chapter 8 Design at the Register Transfer Level

reg Error;
Algorit hmic_Binary_Mul liplier MO(Product. MUltiplicand , Multiplier);

II Error detection

inItial # 1030000 fin ish;
alwa ys @ (Product) begin

Exp_Value = Multiplier · Multiplicand;
1/ Exp_Value = Multiplier · Multiplicand +1; II Inject error to confirm detection
Error = Exp_Value A Product;

end
II Generate multiplier and multiplicand exhaustively for 5 bit operands

initia l begin
#5 Multipl icand = 0;
MUltiplier =0;
repeat (32) #10 begin Multip lier = Multiplier + 1;

rep eat (32) #5 Multiplicand = Multiplicand + 1;

end
end

endmodule

8 . 10 DESIGN WITH MULTIPLEXERS

Theseq uence-register-and-decoder scheme for the des ign of a controller has three parts : the flip­
flops thai hold the binary stale value. the decoder that generates the control outputs. and the gates
thai determin e the nex t-stare and output signals. In Sect ion 4 .11. it was shown that a co mbi­
national circuit can be implemented with multiplexers instead o f indiv idual gates. Replacing
the gates with multiplexers results in a regular pattern of three levels o f components. The first
level consists of mu ltip lexers thai determin e the next stare of the register. The second level
contains a regi ster that hold s the present binary slate. The third level has a decoder that asserts
a unique outputline for eac h control stale. These three compone nts are predefined standard cells
in many integra ted ci rcuits.

Consider. for example, the AS M chart of Fig . 8.20. co nsis ting of four states and four co n­
tro l inputs. We are interested in only the control signals gove rning the state sequence. These
signals are independ ent of the reg ister operations of the darapath. so the edges of the gra ph are
not annotated with datapath register operations, and the graph does not identify the output sig­
nals of the co ntroller. The binary assignment for each state is indicated at the upper right comer
of the state boxes. The deci sion boxes specify the state transitions as a function of the four
control inpu ts: IV,.t. y. and z. Th e three-level contro l implementat ion , shown in Fig . 8.2 1. co n­
sists of IWOmult iplexers , MUXI and MUX2;a regi ster with two flip-flops. G) and Go: and a
decoder with four outpuls--d()o d" d2• and dJ• correspo nding to 5_0, 5_1,5_2. and 5_3. re­
spectively. The outputs of the state-register nip-flops are applied to the decoder inputs andalso
to the selec t input s of the multiplexers. In this way. the present state of the register is used to
select one of the input s from each multiplexer. Th e OUtpUISof the multiplexers are then app lied
to the D inputs of G l and Go. The purposeof eac h multip lexer is to produce an inpu t to its cor ­
responding flip-fl op equal to the binary value of that bi t of the next-state vector. The inputs of



Section 8.10 Design wi th M ultiplexers 391

,

o

10

o

, - "

•

FIGURE 8 .20
Exam ple of ASM chart with four control inputs

the multiplexer s are determined from the decision boxes andstate transitions given in the ASM
chart. For example. slate 00 stays at 00 or goes to Ol , depending on the value ofi npul w. Since
the next state of G] is 0 in eithe r case, we place a signal equivalent to logi c 0 in MUX l input
O. Tbe next stale of Go is 0 if w "" 0 and 1 if w "" 1. Since the next stale of Go is equal to w,
we apply CORICOI input w to MUX2 input O. This means that when the select inputs of the mul­
tiplexers are equal to present sta te 00, theoutputs of the multiplexers provide the binary value
that is transferred to the register at the next clock.pulse .



392 Chapter 8 Design at the Register Transfer Level

G,

,
z

do
d,

MUX select
d,

d,

G,

y,

eLK

FIGURE 8.21
Con trol lmplementatlon with multip lexers

To facil itate the eva luation of the mul tiplexer inputs , we prepare a tab le show ing the input
conditions for eac h possible state transition in the ASM chan. Table 8.8 gives this information
for the ASM chan of Fig. 8.20. There are two trans itions from presen t state 00 or 01 and three
from present state 10 or 11. The sets of transitions are separated by horizontal lines across the
table. The input conditions listed in the table are obta ined from the decision boxe s in the AS M
chan. For example. from Fig. 8.20, we note that present Slate 0 1 will go to next state 10 if x "" I
or to next stale II if x "" O. In the table, we mark these input conditions as x and .e'. respecti vely.
The IWO columns under " multiplexer inputs" in the table specify the input values that must be
applied to MUX I and MUX2. The multiplexer input for eac h present slate is determined from
the input conditions when the next state of the flip-flop is equal to I. Thus. after present state
01. the nex t stale of G l is always equal to I and the next state of Go is equal 10the complement
of x. Therefore. the input of MUX 1 is made equal 10 I and thai of MUX2 to x ' when the pres­
ent state of the register is 0 1. As another exam ple. afte r prese nt stale 10. the next stale of G] must
beequal to I if the input conditions are yz ' or yz.When these two Boolean terms are ORed to­
gether and the n simplified. we obtain the single binary varia ble y. as indicated in the table. The
next sta te of Go is equal 10 I if the inpul conditions are JZ "" I I . If the next state of G1 remains
at 0 after a given prese nt state. we place a a in the multiplexer input, as,shown in present state
00 for MUXl . lfthe next stale ofGI is always I , we place a I in the multiplexer input, as shown
in present state 0 1 for MUX I. The other entries for MUX I and MUX2 are derived in a similar



Sect ion 8.10 Design with Multiplexers 393

Table 8 .8
MultJplexer Input Conditions

Present Next Input
State State Conditi on Inputs

G, Go G, G. , MUXl MUX2

0 0 0 0 w'

0 0 0 I w 0 w

0 I I 0 x
0 I I I x' x '

I 0 0 0 y'
I 0 I 0 YZ I
I 0 I I y, )'Z ' + yz = y "I I 0 I y'Z
I I I 0 Y
I I I I y'Z' )' + y'z ' =Y + Z' y'z + y'Z' = y'

manner. The multiplexer inputs from the table are then used in the control implementation of Fig.
8.21. Note that if the next state of a flip-flop is a function of two or more control variables. the
multiplexer may require one or more gates in its input. Otherwise. the multiplexer input is equal
to the contro l variab le. the com plement of the control variable. O. or I.

Design Example: Count the Number of Ones In a Register

We will demonstrate the mulliplexer implementation of the logic for a control unit by means
of a design examp le-a system that is to count the number of l 's in a word of data. The example
will also demonstrate the formulation of the ASMD chan and the implementation of the data­
path subsys tem.

From among various alternative s, we will co nsider a ones counter consisting of two regis­
ters Rl and R2. and a flip-flop E. (A more effic ient implementation is cons idered in the prob­
lems at the end of the chapter.) The system counts the number of I 's in the number loaded into
register RJ and sets register R2 to that numbe r. For exam ple. if the binary numbe r loaded into
RJ is 1011100 1, the circuit counts the five I's in RJ and sets register K2 to the binary count 101.
This is done by shifting each bit from register RJ one at a time into flip- flop E.The value in E
is checked by the control, and each time it is eq ual to 1. register R2 is incremented by I.

The block diagram of the datapath and co ntroller are shown in Fig. 8.22(a). The datapath
conta ins registe rs RJ, R2, and E, as well as logic to shift the leftmos t bit of RI into E. The unit
also co ntains logic (a NO R gate to detect whether RI is O. but that detail is omitted in the
figure ). The exte rnal input signal Stan launches the operation of the machine; Ready indicates
the status of the machine to the exte rnal environment. The contro ller has SIaIUS input signals
E and Zero from the datapat h. These signals indicate the contents of a register holding the
MSB of the data word and the condition that the data word is O. respec tively. E is the output
of the flip-flop. Zero is the output of a circuit that checks the contents of register RI for all D's.
The circuit produces an output Zero = I when RI is equal to 0 (i.e .• when RI is empty of 1's).



394 Chapter 8 Design at the Register Transferlevel

$ignals~ E

Zm I
f "-""" RJ

-= Lom/ftI>

n~ft~ f
Corurolln

Shift-*ft
,-

IncrJU

;"f,- f I I

t I I

Start

Rtad,

count
(oj

Rl < -R1 +1= -r-

f

{E. Rll <- IE. Rll « I --=

(bJ

fiGURE 8.22
Block diagram and ASMD chart tot' count-ot-onf!S circuit

Rl < -R1+ 1



Section 8.10 Design with Multiplexers 395

A preliminary ASMD chan showing the state sequence and the register operations is il­
lustrated in Fig. 8.22(b), and the complete ASMD chan in Fig. 8.22(c). Asserting Start with
the controller in Lidle transfers the state to S_I , concurrently loads register Rl with the bi­
nary data word, and fills the cells of R2 with I' s. Note that incrementing a number with all
t 's in a counter register produces a number with all D's. Thus. the first transition from 5_1 to
5_2 will clear R2. Subsequent transitions will have R2 holding a count of the bits of data that
have been processed. The content of RI , as indicated by Zero, will also be examined in 5_1.
If RI is empty, Zero = I , and the state returns to 5_idle, where it asserts Ready. In state 5_1,
Incr_R2 is asserted to cause the datapath unit to increment R2 at each clock pulse. If Rl is not
empty of ls, then Zero = 0, indicati ng that there are some l 's stored in the register. The
number in RI is shifted and its leftmost bit is transferred into E. This is done as many times
as necessary, until a I is transferred into E. For every I detected in E, register R2 is incremented
and register Rl is checked again for more I 'so The major loop is repeated until all the l ' s in
Rl are counted. Note that the state box of 5_3 has no register operatio ns, but the block asso­
ciated with it contains the decision box for E. Note also that the serial input to shift register
Rl must be equal to 0 because we don't want to shift external I 's into Rl . The register Rl in
Fig. 8.22(a) is a shift register. Register R2 is a counter with parallel load. The multiplexer
input conditions for the control are determined from Table 8.9. The input conditions are
obtained from the ASMD chart for each possible binary state transition. The four stales are
assigned binary values 00 through 11. The transition from present state 00 depends on Start.
The transition from present state 01 depends on Zero, and the transition from present state I I
on E. Present state 10 goes to next state 11 unconditionally. The values under MUX 1 and
MUX2 in the table are determined from the Boolean input conditions for the next state of G1
and Go, respectively.

The control implementation of the design example is shown in Fig. 8.23. This is a three-level
implementation. with the multiplexers in the first level. The inputs to the multiplexers are ob­
tained from Table 8.9. The Verilog description in HDLExample 8.8 instantiates structural mod­
els of the controller and the datapath. The listing of code includes the lower level modules

Ta bl e 8 .9
Multiplexer Input Conditions for Design Exam ple

Present Next Input Multiplexer
State State Conditions Inputs

G, G. G, G. M UXl M UX2

0 0 0 0 Start'
0 0 0 1 Stan 0 Stan

0 1 0 0 Zero
0 1 1 0 Zero' Zero' 0

I 0 I I None I

1 I I 0 E'
I I 0 I E E' E



396 Chapter 8 Design at the Reg ister Transfer level

o

ZerQ'

£ '

Sian

o

£

d=k~===~reset]» l..'::5 ""'-:.J

5hifUe/t

FIGURE 8 .23
Control Implementation for count-of-o nes circuit

implementing their structures . Note tha t the data path unit does not have a reset signal to clear
the registers. but the models for the flip-flop , shift register. and cou nter have an active-low
reset. Th is illustra tes the use of Verilog data type supply ) to hard wire those ports to logic value
I in their instantiation within Datapath_STR . Note also that the test bench uses hierarchical de­
referencing to access the stale of the controller to make the debug andverification tasks easie r.
without having to alter the modu le ports to provide acce ss to the internal signals. Another de­
tail to observe is that the serial input to the shift regi ster is hardwired to O. The lower level
mode ls are described behaviorally for simplic ity.

HDL Exam ple 8.8

module Coull t_Ones_STR_STR (count. Ready, data , Start. dock. reset_b);
/I Mux - decoder implementation of control logic
/I controller is structural
/I datapath is structural

parameter R1_size =8, R2_size =4 ;

output [R2_size -1: OJ count;
output Ready;



Section 8 .10 Design with Multiplexers 397

Input [R1_size -1: 0]
Input
w ire

data;
Start, clock, reset_b ;
load_regs, ShiftJeft , Incr_R2, Zero, E;

Controner_STR MO(Ready , Load_regs. ShiftJeft , Incr_R2 , Start, E, Zero,

clock, reset_b);
Datapath_STR M1 (count, E, Zero, data, l oad_regs, ShiftJeft, Incr_R2,

clock) ;
endmodule

Mux_l
MUx_O

M'
MO
M2

Ready;
Load_regs, ShiftJ eft , tncr_R2 ;

Slart ;
E, Zero;

clock, resetb:
GND;

PWR;
SO = 2'bOO, Sl = 2'b01, S2 =2'b10, S3 = 2'b11; fI Binary code

Load_regs, ShiftJeft, Incr_R2 ;
GO, GO_b, D_inO, D_in1, G1, G1_b ;
Zero_b = -zero:
E_b = -E;
select = {G1, GO};
Decoder_out;
Ready:= - Decoder_oul [O];
Incr_R2 = - Decoder_out(l ];
Shift_le ft =-Decoder_oul[2 };
(Load_regs, Ready, Start);
(DJn1, GND, Zero_b , PWR, E_b, select);
(DJnO, Start, GND, PWR, E, select) ;
(Gl , G1_b, D_in1, clock, reseC b);
(GO, GO_b, DJ nO, clock, resel_b );
(Decoder_out, Gl , GO, GND);

module Conlro ller_STR (Ready, Load_regs, ShiftJ eft , Incr_R2 , Start, E, Zero, clock,
resel_b);

output
output
Input
Input
Input
supplyO
supply 1
parameter
wire
wire
wire
wi re
wi re [1: 0]
wire [0: 3]
assign
assig n
assign
. nd
mux_4xl _beh
mux_4x 1_beh
D_fIip_f1op_AR_b
D_fl ip_f1op_AR_b
decoder_2x4_df

endmodule

E, Zero;
data;
Load_regs, ShiftJeft , Incr_R2, clock;

module Datapalh_STR (count, E, Zero, data, Load_regs, ShiftJeft, Incr_R2, clock);
parameter R1_size:= 8, R2_size =4;
output [R2_size -1: 0] count;

output
Input (R1_size -1: 0]
Input



398 Chapter 8 Design at the Registe r Transfer level

wire (R1_size -1: OJ
wire
supplyO
supply1
assi gn Zero = (R1 == 0);
Shift_Reg M1
Counter M2
D_f1 ip_f1op_AR M3
and

endmod ule

R1:
Zero;
Gnd;
Pwr;
/I implicit combinational logic
(R1, data, Gnd, Shift_left, l oad_regs, clock, Pwr);
(count, l oad_regs, Incr_R2, dock, Pwr);
(E, w1, clock, Pwr);
(w1, R1(RC size -1], Shift_left);

module Shift_Reg (R1, data, SI_O, Shift_left, l oad_regs, dock, reset_b);
parameter R1_size = 8;
output (R1_size -1: OJ R1;
input (R1_size -1: OJ data:
Input SI_O, Shift_left, Load_regs;
input clock, reset_b;
reg [R1_size -1: OJ R1 :
always @ (posedge clock, negedge reset_b)

if (reset_b == 0) R1 <= 0:
else begin

If (l oad_regs) R1 <= data; else
If (ShiftJ eft) R1 <= {R1(R1_size -2: OJ, SI_O}; end

endmodule
module Counter (R2, l oad_regs, Incr_R2, dock, reset_b);

parameter R2_size = 4;
output [R2_size -1: OJ R2;
input l oad_regs, Incr_R2;
Input clock, reseCb;
reg (R2_size -1: OJ R2:
always @ (posedge clock, negedge reset_b)

If (reset_b == 0) R2 <= 0;
else if (l oad_regs) R2 <= (R2_size (1'b1)}; 1/ Fill with 1

else if (Incr_R2 == 1) R2 <= R2 + 1;
endmodule
module D_f1 ip_f1op_AR (0 , D, ClK, RST);
output 0 ;
Input D, ClK, RST;
reg 0 ;
always @ (posedge c tx, negedge RST)

if (RST == 0) a <= 1'eo:
else Q <= D;

endmod ule



Section 8.10 Design with Multiplexers 399

module D_f1ip_f1op_AR_b (a, O_b, D, Cl K, RST);
output O,O_b;
input D, ClK, RST;
reg 0 ;
assign O_b = - 0 ;
always @ (posedge ClK, negedge RST)

jf (RST == 0) °<= 1'bO ;
else °<= D;

endmodule
1/Behavioral description of four-to-one line multiplexer
1/Verilog 2005 port syntax
module mux_4x1_beh
(output reg m_out,
Input in_O, in_1, ,"_2, ,"_3,
Input [1: 0] select

);
always @ (in_O, in_1, in_2, in_3, select) 1/Verilog 2005 syntax

case (select)
2'bOO: rn_out = in_O;
2'b01: m_out = in_1;
2'b10: m_out = in_2;
2'b11: m_out = in_3;

endease
endmodule

II Dataflow description of two-to-four-Iine decoder
1/ See Fig. 4.19. Note: The figure uses symbol E, but the
/I Verilog model uses enable to indicate functionality clearly.
module decoder_2x4_df (D, A, B, enable);
output [0: 3] D;
input A, B;
Input enable;

assign

endmodule

D[O] = -(- A & -B & - enabte).
D[1] = - (- A & B & -enable),
D[2] = - (A & -B & - enable),
D[3] = - (A & B & -enabie):

module CCount_Ones;
param eter R1_size = 8, R2_size =4;
wire [R2_size -1: 01 R2;
wire [R2_size ·1: 0] count;



400 Chapter 8 Design at the Reg ister Transfer Level

wire Ready;
reg (R1_size -1: OJ data;
reg Start. d ock. reset_b;
wire [1: 01 state; " Use only for debug
assign state e {MO.MO.G1. MO.MO.GO};
CounCOnes_STR_STR MO(count Ready, data, Start, dodt. reset_b);
Initia l #650 $fin lsh ;
Initial beg in clock e 0; #S forever #5 clock = - clock: end
Initia l fork
#1 reseCb = 1;
#3 reseCb = 0;
#4 reseCb = 1;
#27 reset_b = 0;
#29 reset_b = 1;
#355 reset_b = 0;
#365 resel_b = 1;
#4 data = 8'Hff;
#145 data = 8'haa;
#25Start= 1;
# 35 Start = 0;
#55 Start = 1;
#65 Start = 0;
#395 Start = 1;
#405 Start = 0;

join
endmodule

Test Ing the Ones Counter

The test bench in HDl Example 8.8 was. used to produce the simulation results in Fig. 8.2.1.
Annotations have been added for clarification. In Fig. 8.2.s(a). r~u,-b is toggled low at
t = 3 to driv e the co ntroller into S_jdl~. but with Start not yet having an assigned ..-alue.
(The default is x.) Consequentl y. the controller enters an unknown state (the shaded wave­
form) at the next clock. and its output s are unknown. When reu,-b is asserted (low) again
at t = 27, the state enters S_id/e. Then, with Start = I at the first clock after Teset_b is de­
asserted, (I ) the controller enters S_ I, (2) Load_Tegs causes Rl lo be set 10 the value of
data , namely, 8' Hff, and (3) R2 is filled with 1'5. At the next clock, R2 starts counting from O.
Shift_left is asserted while the controller is in state 5_2. and incr_R2 is asserted while thecon­
troller is in stale 5_1. Notice that R2 is incremented in the next cycle after incr_R2 is a..­
serted . No output is asserted in stale 5_3. The counting sequence continues in Fig. 8.2.s(b)
until am is asserted, with E holding the last I of the data word. The next clock produces
count = 8, and stare returns to S_idl~ . (Additional testing is addressed in the problems at
the end of the chapter.)



Section 8.11 Race-Free Design 401

Machine begins
counting

,e5el_b asserted (low). but
Sian un kno wn

Name
0 l 3D -: 60 90 120

clock ~J'-~ ...rL...rL...rL...rL

' enoc b ' " u

Stan
Zero
E '--

slate/I: 0/
statrll]
5lale/OJ ~ ~

Ready
L oadJegs

~Shjftjeft
IncrJU

dala/ 7: OJ

RI/7: 0J
E
R2/3: OJ 0
count/3: 0/

I
/ \

R2 fi lled with Is Rl loaded wilh data

(,)

FICiURE 8.24
Simulat ion waveforms for cou nt-of-ones circuit

8 .11 RACE -FREE DESIGN

Once a circuit has been synthesized, either manual ly or with tools. it is necessary 10 verify that
the simulation results produced by the HDL behavioral model match those of the netlist of the
gates (standard cell s) of the physical circuit. It is important to resolve any mismatch, because
the behavioral model was presumed to be correct. There are various potential sources of mis­
match between the results of a simulation. but we will consider one that typically happens in
HDL-based design met hod ology. Three realities contribute to the potential probl em : (I ) A
physical feedback path exists between a datapath unit and a control unit whose inputs include
status signals fed back from the datapath unit; (2) blocked procedural assignments execute
immediately, and behavioral model s simulate with 0 propagation delays., effectively creating
immediate changes in the outputs of combinational logic when its inputs change (i.e., changes
in the inputs and the outputs are scheduled in the same time step of thesimulation); and (3) the



402 Chapter 8 Design at the Register Transfer l evel

Rl is empty of Machin.. returns to Compuwrio1/.S a"
Is S_idle don..

Name
120 ISO -. 240 \ "!"

clock~~~ ~

"sel_b -. \
Start
Ze ro \
E

state{1:0j 1 2 ) 1 2 ) I 2 ) I 2 ) 1 2 ) I 0
stat..{l j F:-..rL-J L-J ~

stat..{Oj

Ready
LoadJ ..gs

l::::ShifUef/ .--::;
hie' _R2

daraf7:0j ff aa

R/{7:0j ffi ro J.. eo ctl SO 00

E
R2{3: OJ 2 ) 4 5 6 7 ,
coun/{3: 0/ 2 ) 4 5 6 7 s

/

/
1f2 holds numb.., of Is

(b)

FIGURE 8 .24 (Cont inued)

order in which a simulator executes multiple blocked assignments 10 the same variable at a
given time step of the simulation is indeterminate (i.e.• unpredictab le).

Now con sider a sequential machine with an HDL model in which all ass ignments are
made with the blocked assignment operator. At a clock pulse. the register operations in the
datap ath, the state transitions in the controller, the updates of the next state and output logic
of the controller. and the updates to the status signals in the datapath are all scheduled 10 occur
at the same time step of the simulation. Which executes first? Suppose that when a clock pulse
occur s. the state of the controlle r changes before the reg ister operations execute . The change
in the state could change the outputs of the control unit. The new values of the outputs would
beused by the datapath when it finally exec utes its assignments at that same clock pulse. The



8 .12

Section 8.12 Latch-Free Design 403

result might not be the same as it would have been if the datapath had executed its assign­
mem s before the co ntrol unit upda ted its state and outputs. Conversely, suppose that when
the cloc k pulse occurs. the datapath unit executes its operations and updates its status signals
tirst . The updated status signals could cause a change in the value of the next state of the con­
troller. which would be used to update the state . The result could differ from that which
would result if the stale had been updated before the edge-sensi tive operations in the da ta­
path executed. In either ca se. the timing of register transfer operations and stale transi tions
in the different rep resentations of the sys tem might not match . Fortunately. there is a solu­
tion to this dilemma.

A designer can eliminate the software race conditions just described by observing the rule
of modeling combinational logic with blocked assignments and modeling state transitions and
edge-sensitive register operations with nonblocking assign ments. A software race can not hap­
pen if nonb lockin g ope rato rs are used as shown in all of the examples in this text . because the
samp ling mechanism of the nonblocking operator breaks the feedback path between a state
transition or edge-sensitive datapath operation and the combinatio nal logic that forms the next
state or inputs 10 the registers in the datapath unit. The mechani sm does this because simula ­
tors evaluate the expressions on the right -hand side of their nonblocking assignment state­
ments before any blocked assignmen ts are made . Thus. the nonblocking a...signmen ts cannot
be affected by the resul us of the blocked assignments. In sum. always use the block ing opera­
tor to model combinational logic. and use the nonblocking operator to model edge-sensitive reg­
ister operations and state transitions.

It also might appear that the physical struc ture of a datapath and the controller together cre­
ate a physical (i.e.• hardware). race condition. because the status signals are fed back to the con­
troller and the outputs of the controller are fed forward to the datapath. Howe ver. timing analysis
can verify that a change in the output of the controller will not propagate through the datapath
logic and then through the input logic of the contro ller in time to have an effect on the output
of the co ntrolle r until the next cloc k pulse. The stale cannot update unti l the next edge of the
clock. even though the status signals update the value of the next state. The flip-flop cuts the
feedback path between clock cycles. In practice. timing analysis verities thaI the circuit will
operate at the specified clock freque ncy. or it identities signal paths whose propagation delays
are problematic . Remember the design must implement the correct logic and operate at the
speed prescribed by the clock.

LATCH -FREE DESIGN

Continuo us assignments model combi natio nal logic implicitly . A feedback-free continuou.s as­
signment will synthesize to comb inational logic. and the input-output relationship of the logic
is automatically sensitive to all of the inputs of the circuit. In simulation. the simulator mon­
itors the right -hand sides of all continuous ass ignments. detects a change in any of the refer­
enced variable s. and updates the left-hand side of an affected ass ignment statement. Unlike a
continuous assignment. a cyclic behavior is not necessarily com pletely sensitive to all of the
variables that are refe renced by its assignments statements. If a level-sensitive cyclic behav­
ior is used to describe combinational logic. it is essential tha t thesensi tivity list include every



404 Chapter 8 Design at the Registe r Transfer level

variable that is referenced on the left-hand side of an assignme nt statement in the behavior.
If the list is incomplete, the logic de scribed by the beh avior will be sy nthes ized wi th latches
at the ou tputs of the logic . This implementation wastes silicon area and may have a mismatch
betwee n the simulation of the behav ioral model and the synthes ized circuit. These difficul­
ties can be avo ided by en suring that the sensitivity list is complete . but. in large ci rcuits , it is
easy to fail to include every referenced vari able in the sens itivity list of a level-sen sitive cyclic
behavior . Conseq uently. Verilog 2001 incl uded a new ope rator to reduce the risk of acc iden ­
tally sy nthes izing latches.

In Verilog 200 1. the tokens@ and " can be combined as@·or @(·)and areusedwithout
a sensitivity list to indicate that execution of the assoc iated stateme nt is sens itive to every vari ­
ab le that is refere nced on the right-hand side of an assignment statement in the log ic. In effect.
the ope rator @. indicates that the logic is 10 be interpreted as level-se nsitive comb inational
logic ; the logic has an imp licit sensitivity li!'.t composed of all of the vari able!'. that are refer­
enced by the proced ural assignments . Using the @. operator will prevent acc iden tal synthe­
sis of latches.

IIDL Example 8.9

The following level-sensitive cyclic behavior will synthesize a two-channel multiplexer.

modu le mux_2_V2001 (output reg 131: OJy. lnput [31: OJ a. b, Input sel);
alway s @"
y =sel ?a: b;

endmodule

The cyclic behavior has an implicit sensitivity list consisting of a. b. and sel.

8 . 13 OT HER LANGU A G E FEATURES

The examples in this text have used only those featu res of the Verilog HDL that are appropriate
for an introd uctory course in logic design. verilog 2001contains featu res that are very useful to
designers. but which are nor considered here. Among them are mult idimensional array s. variable
pan selects. array bit and pan selects. signed reg, net. and pan declarations. and local parameters.
These enhancements are treated in more advanced texts using Verilog 2001and Verilog 2005.

PR0 8 LEM S

Ans.....ers 10 problems marked with · appear at the end of the book.

8 .1 · Explain in .....ords and .....rite HDL statements for the operations specified by the following regis­
ter transfer notation:
(a) R2 --R2 + I. R I -- R
{b ) R.J-R.J - J
(c ) If (SI = J) then (RO-- Rl) else if (S2 Zf 1) Ihen (RO- R2)



Problems 405

8 .2 Draw ( I) a block diagram shewing the controller. datapath unit (with internal registers). and sig­
nals, and (2) the port ion of an ASMD chart startin g from an initial sta te. There are two con trol
signals: x and y, If .ry = 01. register R is incremented by 1 and control goes to a second state. If
.ry -= 10. registe r R is cleared to zero and control goes from the initial state to a third state. Oth­
erwi se. control stays in the init ial state. Assume active-low synchronous reset.

8 .1 Draw the AS MD charts for the following state transitions:
(a) If x = I. contro l goes from state SI to state 52; if x = O. generate a conditional operation

R < = R + 2andgo fromSl toS2'
(b) If x = I . control goe s from 51to 52 and then to 53; if x = O. control goes from 51 to 53'
(c) Sta rt from state5J; the n if xy = 00. gotoS2; if xy = 10. gOtOS3; andifxy = OI.goto SI:

otherwise. go to 53.

8 .4 Show the eight exn paths in an ASM block emanating from the decision boxes thai chec k the
eig hl possible binary values o f three contro l variables x. j', and e.

8 .S Explain how the ASM and ASMD charts differ from a conventional flowchart . Using Fig . 8.5 as
an illus trat ion. show the difference in interpretation.

8 .6 Construct a block diagram and an ASMD chart for a digital syste m that counts the number of
people in a room. The one door through which people enter the room has a photoce ll that changes
a signal x from Ito 0 when the lighl is interrupted . The y leave the room from a seco nd door with
a similar photoc ell ihal changes a signal )' from I to 0 when the light is interrupted . The datapath
circuit consists of an up-down counter ..... ith a display that shows how many people are in the
roo m,

8 .7· Ora..... a block diagram and an ASMD chan for a circuit ..... ith two eight-bit regis ters RA and RB
that receive two unsigned binary numbers. The circuit performs the subtraction operation

RA -RA - RB

Use the method for subtraction described in Sec tion 1.5. and set a borrow !lip- flop to I if the an­

swer is negative . Write and verify an HDL model o f the c ircuit.

8 .S* Design a digi tal circuit with three l6-bit registers AR. BR, and CR that perform the following
ope rat ions:
(a) Transfer two l6-bi t signed numbe rs (in 2's-complement represe ntation) to AR and SR .
(b) If the number in AR is negative. divide the number in AR by 2 and transfer the result to reg­

b ter e R.
(c) If the number in AR is posltlve but nonzero. multiply the numbe r in BR by 2 and transfer the

resu lt to register CR.
(d) If the number in AR is zero. clear register CR to O.
(e) Writ e and verify a beha vioral model of the circuit.

8.9* Des ign the controller whose state diagram is given by Fig. 8. I I(a). Use one flip-flop per state (a one­
hot assignmenrj. Write. simulate, verify, and compare RlL and struct ural models of the co ntroller.

8 .10 The sta te diagram of a control unit is shown in Fig . P8. IO. II has fou r states and two inputs .rand

y. Draw the equiva lent ASM chart. Write and verify a Veri log mode l of the controller.

8.11 . Design the controller whose state diagram is shown in Fig. P8.IO. Use D flip- flops.

8 .12 Design the four-bit counter with synchronous clear spec ified in Fig. 8.10.

8 .11 Simulate Design_Exampfe_STR (see HDL Example 8A ). and verify that its beha vior marches
that of the RTL description. Obtain state Intormsno n by di spla ying GO and GJ as a concatenat­
ed vector for the stale.



406 Chapter 8 Design at the Register Transfer Level

.r - a

00

.I = l , y -O

10
.t - I .t -I
Y .. I '----"J ....--,-- --c-- \..::'/__--" y = 0

FICiURE Pa.l0
Control state diagram fo r Problems 8.10 and 8,11

S.14 What, if any. are the consequences of the machine in Desjgn_E:.mmple_RTL (see HDL Example
8.2) entering an unused state?

S.15 Simulate Dt'sig/l_£.mmple-fiTL, and verify that it recovers from an unexpected reset condition
during its operation, i.e., a "running reset" or a "reset on-me-fly."

S.16- Develop a block diagram and anASMD chart for a digitalcircuit that multiplies two binary num­
bers by the repeated-addition method. For example. to multiply 5 x 4. the digital system evalu­
ates the productby adding the multiplicand four times: 5 + 5 + 5 .,. 5 ,. 20. Design the circuit.
Let the multiplicand be in register BR, the multiplier in register AR. and the product in register
PRoAn adder circuit adds the contents of BR to PRoAzero-detection signal indicates whether AR
is O. Write and verify a verijog behavioral modelof the circuit.

S.l P Prove thai the multiplication of two n-bit numbers gives a product of length less than or equal to
2/1 bits.

S.lS- In Fig. 8.14, the Q register holds the multiplier and the B register holds lhemultiplicand. Assume
that each number consists of 16 bits.
(a) How many bits can be expected in the product, and where is it available?
(b) How many bits are in the P counter. and what is the binary number loaded into il initially?
(c) Design the circuit thai checks for zero in the Pcounter.

8 .19 List the contents of registers C,A, Q, and P in a manner similar to Table 8.5 during the process
of multiplying the two numbers 1101t (multiplicand) and 101 11 (multiplier).

8 .20'" Determine the time il takes 10 process the multiplication operationin the binarymultiplierdescribed
in Section 8.8. Assume that the Q register has n bits and the clock cycle is 1nanoseconds.

8 .21 Design the control circuit of the binary multiplier specified by the stale diagram of Fig. 8.16.
using multiplexers. a decoder. and a register.

8 .22 FigurePS.22 showsan alternative ASMDchartfor a sequentialbinarymultiplier. Writeand verify an
RTLmodelof the system Comparethis designwiththatdescribedby theASMDchart in Fig. 8.15(b).

S.23 Figure PS.23 showsan alternative ASMDchartfor a sequentialbinarymultiplier. Writeand verify an
RTLmodel of the system.Compare thisdesignwiththatdescribedby the AS~ID chartin Fig. 8.15(b).



It <- 0
c <- o

, B <- Mulfiplictmd
Q <- Mll ltipfit'
1' < " mJ itt

=+,""",/,

1' < - 1' - 1
/Jtcrtmtnl COUntt ,

s""""

<,
Ie.A, QI <- IC, A. QI » I
17-M rtgu'", Jhift$ 10 tht
right by on .. bil

fiGURE P8.n
ASMD chart lor Prob lem 8.22

Problems -407

8 .24 The HDL desc rip tion of a sequ ential binary multiplier give n in HDL Example 8.S encapsulates
the descripnons of the controlle r and the datapath in I single Verilog module. Write and verify a
model that encapsulates the controller and datapath in separate modules. .

8.2$ 1be sequentia l binary multiplier described by the ASMD chan ia Fig_8.IS don not consider
...·hethe r the multiplicand Of the sh.ifted multiplier is O. lberefOC'C. it executes for a fixed number
ofclock cycles. independently of the data..
(a) Dev elop an ASMD chart fOf. more efficienl multiplier that will term inate evecunce I!i soon

I!i either word is found 10 be u rn.



408 Chapter 8 Design at the Register Transfer Level

.'~..
- -<'l'A.t . )-'-- - - ---'

FIGURE P8 .23
ASMD ch art fo r Problem 8 .23

A <: 0
C < -O
B <- ,\{ulliplicM d
Q < .. Mullipli,.r
P <- m_5izr

DecrementCOU flUr

P < = P - 1

Add m ullipliCllfld
/0 5hifr..d sum
(C, A! < - A +B

Ie. A. Ql <= tc.A. QI » I
17-bil register 5hiju 10 Ih..
righl b.vone b il

(b) Write an HDL descript ion of the circuit. The controller and datapath are to be encapsulated
in separate Verilog mod ules.

(c) Write a test plan and a test bench . and verify the circuit.

8 .26 Modify the AS MD chan of the sequential binary multiplier shown in Fig. 8.15 to add and shift
in the same clock cycle . Write and verify an RTL description of the system.

8 .27 The seco nd test bench give n in HDL Exam ple 8.6 generates a prod uct for all possible values of
the multiplicand and multiplier. Verifying that eac h result is correct wou ld not be practical. so
modify the test bench to include a statement that forms the expected product. Write additional
statements to co mpare the result produced by the RTL description with the expected result. Your
simulation is to produce an error signal indicating the result of the comparison. Repeal for the struc­
tural model of the multiplier.

8 .28 Write the HDL structural description of the multiplier designed in Section 8.8. Use the block di­
agram of Fig. 8. I4(a) and the control circuit of Fig. 8.18. Simulate the design and verify 115 func­
tionality by u~ ing the test bench of HDL Example 8.6.



Problems 409

8 .29 AnASMD chan for a Iinite stale machine is shown in Fig. PH.29.The ~gi\ler operations are not

specified. because we are interested only in de\ igning the rontrol log ic.
la) Draw the equ ivalent state diagram.
(b) Design the coneot unn with one f1i p-nop per stare.
(c) Lisl lhc stale lable for Ihe control unit.
(d) Design the control unit with three D flip-naps. a decoder. and gales.

""S;;.o ·~:·~o:.:.~""~:sii::

•
0

~I
0 • 00 1

Y
Sj ~~:-

010

!V '-<.''~"~~".",;;.:.....~~

o

•

F )-'----- - --,

110

111

FIGURE. P8.29
ASMD chart for Problem 8.29

101



410 Chapter 8 Design at the Register Transfer Level

(e) Deri ve a table showing the multiplexer input conditions for the control unit.
(f) Design the control unit with three multiplexers, a register with three flip-flops, anda 3 x 8

decoder.
(g) Using the results of (0, write and verify a structural model of the controller.
(h) Write and verify an RTL description of the controller.

8.30" What is the value of E in each HOL block. assuming that RA - I"!
(a) RA=RA - 1: (1)) RA <=RA .1:

If (RA ="' 0) E = 1: If (RA u O) E o 1:

al.. E :: 0: e!• • E <:: 0:

8 .31 · Using the Verilog HOL operators fisted in Table 8.2. assume that A = 4'bOt10. B - '; 'bOO lO.
and C = 4'bOOOO and eva luate the result of the follo wing operations:

A· B; A. + B: A · B; -c; A & B; AI B; A" B; & A; - IC; o4 II B; A&& C; 104; A < B; A > B;

A I-B:

8 .32 Consider the following always block:

alway. @ (posedg. eLK)

If (5 1) R1 <= R1 + R2:
.1•• lf (52) R1 <=R1+ 1:

.1•• R1 <= R1;

Using a four-bit counter with parallel load for Rl (as in Fig. 6.IS) and a foor-bit adder. draw a block
diagram showing the connections of components and control signals for a possible synthesis of

the block .

8.33 The multilevel case statemen t is often translated by a logic synthe sizer into hardware multiplex ­
ers. How would you translate the following case block into hardware (assu me registers of eight
bits each)"!

ca•• (state)

SO: R4 = RO;

5 1: R4 - R1;

52: R4 " R2:
53: R4 " R3:

endcasa

8 .34 The design of a circuit that counts the number of ones in a register is carried out in Section 8.10.
The block diagram for the cireuit is shown in Fig . 8.2.:!{a), a complete AS MD chan for the cir­
cu it appears in Fig. 8.22(c), and structural HOL mode ls of the datapath and con troller are given
in HOL Example 8.8. Using the operations and signal names indicated on theAS~O chart.
(a) w rite DatopalhJlEH. an RTI.. descri ption of the datapath unit of the ones Counter. Write a

test plan specifying the functionality that will be tested. andwrite a test bench to implement
the plan. Execute the test plan to verify the functio nality of the datapatb unit. and produce
annotated simulation results relating me Ie$l plan to me waveforms.prod uced in a simulation.

(b ) Write COli/roller_BEH. an RTL descripti on of the contro l unit of the ones counter. Write a
test plan specifying the functionality that will be tested, and write a test bench to imple­
ment the plan. Exec ute the lest plan to verify the functionality of the con trol unit. and pro­
duce an notated si mulation results relat ing the test plan to the wa veform s produ ced in a
simulation.

(e) Writt' Cmtnt_O/les_BEH_BEH. a lop-level module e ncaps ulating and integrating
CO fltrolltr_BEH and Dotopalh _BEH. Write a lest plan and a tes t be nch. and verify the



Problems 411

description . ProdIlC'e annotated simulation results relating the test plan to the waveforms pro­
duced in a ~imulat ion .

(d) Write Conrroll~rJlEHjHQI, an RTL descripnon of a one -OOl: controller implementing die
ASMD chan of Fig . 8.22(c ). Write a test plan specifying the functionality that will be test·
ed, and writ e a test bench to im plemen t the plan. Execute the te~1 plan and produce annotat ·
ed simulation resul ts relating the tes t plan to the waveform~ produced in a simulation.

(~} Write Cou"t_O"~J_BEH_'_Hot, a top- level modu le encapsulating the module
Conlro/lu_BEH_/ J1or and Datapath_BEH. Write a te!>l plan and a lest bench, and veri fy
the dncription. Prod uce annotated simulation results relating the test plan to the waveforms
produ ced in a simulation.

&.)5 The HDl descri ption and test benc h for a circuit that ccc ms the number of ones in a register are
given in HDL Example 8.8. Modify the test bench and simulate the circuit to verify dial the sys­
tem operat es co rrec tly for the fo llow ing patte rns of data: 8 S'hff. S'hOf. S'hfO. S'hOO, S'haa.
8 'hOa, 8 'haO, 8'hSS, 8' hOS, S'hfSO, 8' has, and S'h5a.

8 ,)6 The design of a circuit that counts the number of ones in a register is carried out in Section 8.10.
The block diagram for the circuit is shown in Fig. 8.22(a), a com plete ASMD chart for this cir­
cuit appears in Fig. 8.22(c ), and structural HDl models of the darapath and contro ller are given
in HDL Example 8.8. Using the ope rat ions and signal names ind icated on the ASMD chart ,
(a) Design the control logic, emp loyi ng one flip-fl op per state (a one-hot assig nment). List the

input equation s for the four flip-flops.
(b) Write Conlroll~r_Gales_' fiot, a gate-level HDL structural descri ption of the circu it, using

the co ntrol de signed in pan (a) and the signals shown in the block diagram of Fig. 8.22{a).
(c) Write a test plan and a test bench. and then veri fy die controll er.
(dl Write Count_OnesJ ;atesj _HO/_STR, a top- Ie\el modu le encaps ulating and integrating in­

stantiations of COtIlro/{('r_GO/('j_JJloIand Dalupalh..sTR. Write a Iesl plan and a test bench
to veri fy the description. Prod uce annotated simulatio n resuns rela ting the tes t plan to the
waveforms produced in a simulation.

8.37 Compared with the circuit presented in HDL Example 8.8, a moreefficient circui t that cou nts the
number of ann in a data word is described by the block diagram and the pattiaily completed
AS~D chart in Fig. PS.J 7. This circui t accomplishes addition and shifting in the same clock
cycle and adds the LSB of the data registe r 10 the counter register al every cloc k cycle .
(a) Complete die AS\.1Dchart .
lb) Using the ASMD chan, write an RTl description of the circuit. A lop-level Verilog modu le ,

Cou"CoLo"~!J_Z_Beh is to instantiate separate modules for die datapath and control units.
(c) Des ign the control log ic. using one flip-flop per state (a one-hot ass ignment ). List the input

equations for the Ilip- Ilcps .
(d ) Write the HDl structu ral description of the circuit. using the controller designed in part (b )

and the block diagram of Fig. P8.37(a).
(e) Write a test be nch to test the circuit. Simulate the circuit to verify the ope ration described in

both the RTL and the structural programs.

8 .)8 The addition of two signed binary numbers in the signed- magnitude representation follows the
rules of ordinary arit hmetic: If the two numbers have die ume l ign (both positive or both nega­
tive). lhe two mag nitudes are added and the sum ha-s the common l ign ; if the two numbers have
opposite signs. the smal ler magn itude is subtracted from the largn and the resul t has the sign o f
the larger magn uude. wrue an HDl behavioral~p'ion for add ing two 8-bit signed numbers
in signed-magnitude reprt' §C'ntation and veri fy. The leftmost hit of the number ho lds the sip! and
the odier seven bits hold the magni tude.



412 Chapter 8 Design at the Register Transfer level

""'-b=~L~_~Clock

R2 <- sr - Rl tO!
- RI <- Rl > I

dara

CO/lI/l

RJ[Oj

La o

S la l/M

sigll als

Stan

Rrody

(0' (b'

flGURl P8 .J7
(a) Alterna tive circuit for a ones counter
(b) ASMD Chart for Problem 8.37

8.)9" For the circuit designed in Problem 8.16,
(a) Write and verify a structural HDL description of the circuit. The datapath and conuoue r arc

to be described in separate units.
(b) w rite and verify an RTL description of Ihe circuit. The datapath andcontroller are to bede­

scribed in separate units.

8.40 Modify the block diagram of the sequential multiplier given in Fig. 8. I4<a) and theAS~1D chan
in Fig. 8.15Ib) to describe a system thai multiplies 32-bit words. but with 8-bit tb}1e\loide) encr­
nal datapaths.The machine is to assert Ready in the (initial) reset stale. When Stem is assened.jhe
machine is to felch the data bytes from a single 8-bit data bus in consecutiveclock cycles (multi­
plicand bytes first, followed by multiplier bytes. least significant byte fiNt) and store the data in
datapath registers. GoC Dola is 10 be asserted for onecycle of the clock when the transfcr j<; com­
plete. When Rill! is asserted, the product is 10 be fonned sequentially. DoneProduct Is 10 be as­
sertedfor oneclockcyclewhen the multiplication iscomplete. Whena signalSendJJara isa....serted,
each byte of the product is to be placed on an g-bit output bus for one clock cycle. in sequence.
beginning with the least significant byte. The machine is to return to the initial state after the prod­
uct hasbeen trancmlrtcd, Consider safeguards. such as not attempting to sendor receive data while
the product is being fonned. Consider also other features that might eliminate needless multipli­
cation by O. For example. do not continue to multiply if the shifted multiplier is empty of 1'5.

8 .41 The block diagram and panially completed ASMD chan in Fig. PSAI describe the behavior of a
two-stage pipeline that acts as a 2: I decimaror with a parallel input and output. Decimators are
used in digital signal processors to move data from a datapath with a high d ock rate to a data­
path with a lower d ock rate. conven ing data from a parallel format 10 a serial formal in the
process. In the datapath shown. entire words of data can be transferred into the pipeline at twice
the rate al which the contents of the pipeline must be dumped tore a holding registeror consumed
by some processor. Thecontentsof the holding register RO can be shiftedout serially, to accomplish



Data

8

Problem s 413

IPI . PO} <~ 10.0}

/' lPi. POI < = (0. 01

PI <'" Datu
PO< =Pl

\
RO<= (Pl , PO)

Ibl

FIGURE P8.41
Two-stage pipeline registe r: Data path un it and ASM D chart

an overall parallel-to-serial conversion of the data stream . The ASMD chan indicate s that the
machine has synchronous reset 10 S_id/e . where it waits until rst is de-asserted and En is assert­
ed. Note that synchronous transitions which would occur from the other Mates to S_idfe under the
action of rst are not show n. With Ell asserted. the machine transitions from S_id fe to S_ J. ac­
companied by conc urrent register operations that load the MSByte of the pipe with Data and
move the content of P I to the LSByte (PO). AI the next cloc k. the state goes 10SJ ulf. and now
lhe pipe is full. If Ld is asse rted 'II the next clock, the machine moves to Sj while dumping the
pipe into a holding register RO. l f Ld is not asse rted. the machine enters S_wait and remains there
until Ld is asserted . at which lime it dumps the pipe and returns to S_I or to S_idle, depending
on whether Ell is asse rted. too . The data rare at Rois one-ha lf the rate at which data are supplied
to the unit fro m an external datapath.
(a ) Develo p the complete ASMD chan.
(b) Using the ASMD chan developed in (a), write and verify an HDL model of rhe datapath.
(e) Write and verify a Verilog behavioral mode l o f the co ntrol unit .
(d) Enca psul ate the datapath and co ntroller in a top-leve l mod ule. and verify the integrated

system.



414 Chapter 8 Design at the Register Transfer Level

REFE REN C ES

1. ARSOLD. "t G. 1999. Verilog Digital Computer Design. Upper Saddle River, ?\J : Prentice Hall.
2 . BHASKElI.. 1. 1997. A Verilog HDLPrimu . Allentow n. PA; Star Galaxy Press.

3 . BHASKER. J. 1998. Verilog HDI. Synthesis. Allentown. PA: Star GalaJl.y Press.

4 . CIl.ETT1. M. D. 1999. Modeling. Synthesis. and Rapid Prototyp ing .....ith Vt'rilog HDL t:ppcr Sad­
dle River. :'\J: Prentice HalJ.

5 . CllETTl. M. D. 2003. Modeling. S)'nt~$js. and Rapid Proto,>p ing ....ith Vt'rilog HDL Upper Sad-
dle River. S J; PrenticeHall.

6 . CLARE. C. R. 1971. Designing Logic S)·.s tems Using Start' Machint's. New ¥ork; ~1cGraw-HiI1 .

7 . HAVES. 1. P. 1993. introduction to Digital Logic Design: Reading. MA; Addison-Wesley.
8 . IEEE Stnndard Hardware Descript ion Language Based on the Vu ilog Harth'a f'(' Description

Langu agt' (IEEE Std 1364-2001). 2001. New York; Institute of Electrical and Electronics
Engin......rs.

9. MASO. M. M. 1993. Computer Syslem Architecture. 3d ed. Upper Saddl ... River.:'\1: Prentice
Hall.

10. MASO. M. ~1.. and C. R. KlME. 2000. Logic and Computt'r Cksi gn Fundamenlals. 3rd ed. Upper
Saddle River, 1'\1; Prentice Hall.

11 . PAl ....lTKAR. S. 2003. Veri/og HDL: A Guidt'to Digital Design and Syntht'sis. Mountain View.
CA: SunSoft Press (a Prentice Hall Title) .

12. SMITH. D. 1. 1996. HDI. Chip Design. Madison. AL: Doone Publications.
13. ThOMAS. D. E.. and P. R. MOOR8V. 2002. Tht' Veri/og Hardware Description Language. 5lh ed.

8 0' 100: Kluwer Academic Publishers.
14. WISKl£R. D.• and F. PROSSER. 1987. The Art of Digital Design, 2d ed. Englewood Cliffs. ~l

Prentice-Hall.


