Chapter 8

Design at the Register Transfer Level

8.1

INTRODUCTION

A digital system is a sequential logic system constructed with flip-flops and gates. Sequential
circuits can be specified by means of state tables as shown in Chapter 5. To specify a large dig-
ital system with a state table is very difficult, because the number of states would be enor-
mous. To overcome this difficulty, digital systems are designed via a modular approach. The
system is partitioned into modular subsystems, each of which performs some function. The
modules are constructed from such digital devices as registers, decoders, multiplexers, arith-
metic elements, and control logic. The various modules are interconnected with datapaths and
control signals to form a digital system. In this chapter, we will introduce a design methodol-
ogy for describing and designing large, complex digital systems.

8.2 REGISTER TRANSFER LEVEL (RTL) NOTATION

334

The modules of a digital system are best defined by a set of registers and the operations that are per-
formed on the binary information stored in them. Examples of register operations are shift, count,
clear, and load. Registers are assumed to be the basic components of the digital system. The in-
formation flow and processing performed on the data stored in the registers are referred 1o as register
transfer operations. We'll see subsequently how a hardware description language includes opera-
tors that correspond to the register transfer operations of a digital system. A digital system is rep-
resented at the register transfer level (RTL) when it is specified by the following three components:

1. The set of registers in the system.
2. The operations that are performed on the data stored in the registers.
3. The control that supervises the sequence of operations in the system.
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A register is a group of flip-flops that stores binary information and has the capability of per-
forming one or more elementary operations. A register can load new information or shift the
information to the right or the left. A counter is considered a register that increments a num-
ber by a fixed value (e.g., 1). A flip-flop is considered a one-bit register that can be set, cleared,
or complemented. In fact, the flip-flops and associated gates of any sequential circuit can be
called registers by this definition.

The operations executed on the information stored in registers are elementary operations that
are performed in parallel on a data word consisting of bits during one clock cycle. The data pro-
duced by the operation may replace the binary information that was in the register before the
operation executed. Alternatively, the result may be transferred to another register (i.e., an op-
eration on a register may leave its contents unchanged). The digital circuits introduced in
Chapter 6 are registers that implement elementary operations. A counter with a parallel load is
able to perform the increment-by-one and load operations. A bidirectional shift register is able
to perform the shift-right and shift-left operations.

The operations in a digital system are controlled by timing signals that sequence the oper-
ations in a prescribed manner. Certain conditions that depend on results of previous operations
may determine the sequence of future operations. The outputs of the control logic are binary
variables that initiate the various operations in the system's registers.

Information transfer from one register to another is designated in symbolic form by means
of a replacement operator. The statement

R2<RI

denotes a transfer of the contents of register R/ into register R2—that is, a replacement of the
contents of register R2 by the contents of register R/. By definition, the contents of the source
register R/ do not change after the transfer. They are merely copied to R/. The arrow symbol-
izes the transfer and its direction; it points from the register whose contents are being transferred
and towards the register that will receive the contents. A control signal would determine when
the operation actually executes.

The controller in a digital system is a finite state machine whose outputs are the control
signals governing the register operations. In synchronous machines, the operations are syn-
chronized by the system clock.

A statement that specifies a register transfer operation implies that a datapath (i.e., a set of
circuit connections) is available from the outputs of the source register to the inputs of the des-
tination register and that the destination register has a parallel load capability. Data can be
transferred serially between registers, too, by repeatedly shifting their contents along a single
wire, one bit at a time, Normally, we want a register transfer operation to ocecur, not with every
clock cycle, but only under a predetermined condition. A conditional statement governing a reg-
ister transfer operation is symbolized with an if-then statement such as

If (T1 = 1) then (R2 < RI)

where T/ is a control signal generated in the control section. Note that the clock is not includ-
ed as a variable in the register transfer statements. It is assumed that all transfers occur at a clock-
edge transition (i.e., a transition from 0 to 1 or from | to 0). Although 4 control condition such
as T1 may become true before the clock transition, the actual transfer does not occur until the
clock transition does.
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A comma may be used to separate two or more operations that are executed at the same
time (concurrently). Consider the statement

If (T3 = 1) then (R2 <= R/, R] < R2)

This statement specifies an operation that exchanges the contents of two registers: moreover.
the operation in both registers is triggered by the same clock edge, provided that 73 = |. This
simultaneous operation is possible with registers that have edge-triggered flip-flops con-
trolled by a common clock (synchronizing signal). Other examples of register transfers are as
follows:

Rl< Rl + R2  Add contents of R2to R! (R] gets Rl + R2)
R3«<R3 + 1 Increment R3 by 1 (count upwards)

R4 «— shr R4 Shift right R4
R5«—0 Clear R510 0

In hardware, addition is done with a binary parallel adder, incrementing is done with a count-
er, and the shift operation is implemented with a shift register. The type of operations most
often encountered in digital systems can be classified into four categories:

1. Transfer operations, which transfer (i.e., copy) data from one register to another.

2. Arithmetic operations, which perform arithmetic on data in registers.

3. Logic operations, which perform bit manipulation (e.g., logical OR) of nonnumeric data
in registers.

4. Shift operations, which shift data between registers.

The transfer operation does not change the information content of the data being moved from
the source register to the destination register. The other three operations change the informa-
tion content during the transfer. The register transfer notation and the symbols used to repre-
sent the various register transfer operations are not standardized. In this text, we employ two
types of notation. The notation introduced in this section will be used informally to specify and
explain digital systems at the register transfer level. The next section introduces the RTL sym-
bols used in the Verilog HDL.

8.3 REGISTER TRANSFER LEVEL IN HDL

Digital systems can be described at the register transfer level by means of a hardware de-
scription language (HDL). In Verilog, descriptions of RTL operations use a combination of
behavioral and dataflow constructs and are employed to specify the register operations and the
combinational logic functions implemented by hardware. Register transfers are specified by
means of procedural assignment statements within an edge-sensitive cyclic behavior, Combi-
national circuit functions are specified at the RTL level by means of continuous assignment state-
ments or by procedural assignment statements within a level-sensitive cyclic behavior. The
symbol used to designate a register transfer is either an equals sign (=) or an arrow (<=); the
symbol used to specify a combinational circuit function is an equals sign. Synchronization
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with the clock is represented by associating with an always statement an event control ex-
pression in which sensitivity to the clock event is qualified by posedge or negedge. The always
keyword indicates that the associated block of statements will be executed repeatedly, for the
life of the simulation. The @ operator and the event control expression preceding the block of
statements synchronize the execution of the statements to the clock event.

The following examples show the various ways to specify a register transfer operation in
Verilog:

(a) assign S=A+B, /I Continuous assignment for addition operation
(b) always @ (A, B) /I Level-sensitive cyclic behavior
S=A+B; /I Combinational logic for addition operation
(c) always @ (negedge clock) // Edge-sensitive cyclic behavior
begin
RA = RA + RB; I/ Blocking procedural assignment for addition
RD = RA, /! Register transfer operation
end
(d) always @ (negedge clock) // Edge-sensitive cyclic behavior
begin
RA <= RA + RB; // Nonblocking procedural assignment for addition
RD <= RA; I/l Register transfer operation
end

Continuous assignments are used to represent and specify combinational logic circuits. In
simulation, a continuous assignment statement executes when the expression on the right-hand
side changes. The effect of execution is immediate. (The variable on the left-hand side is up-
dated.) Similarly, a level-sensitive cyclic behavior executes when a change is detected by its
event control expression (sensitivity list). The effect of assignments made by the = operator
are immediate. The continuous assignment statement (assign) describes a binary adder with in-
puts A and B and output S. The target operand in a continuous assignment statement (S in this
case) cannot be a register data type, but must be a type of net. for example, wire. The proce-
dural assignment made in the level-sensitive cyclic behavior in the second example shows an
alternative way of specifying a combinational circuit for addition. Within the cyclic behavior,
the mechanism of the sensitivity list ensures that the output, S, will be updated whenever A, or
B, or both change.,

There are two kinds of procedural assignments: blocking and nonblocking. The two are dis-
tinguished by the symbols that they use and by their operation. Blocking assignments use the
equals symbol (=) as the assignment operator, and nonblocking assignments use the left arrow
(< =) as the operator. Blocking assignment statements are executed sequentially in the order
that they are listed in a sequential block; when they execute, they have an immediate effect on
the contents of memory before the next statement can be executed. Nonblocking assignments
are made concurrently. This feature is implemented by evaluating the expression on the right-
hand side of each statement in the list of statements before making the assignment to their left-
hand sides. Consequently, there is no interaction between the result of any assignment and the
evaluation of an expression affecting another assignment. Also, the statements associated with
an edge-sensitive cyclic behavior do not execute until the indicated edge condition occurs.
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Consider the two examples given. In the blocking procedural assignment, the first statement
transfers the sum to RA and the second statement transfers the new value of RA into RD. At the
completion of the operation, both RA and RD have the same value. In the nonblocking proce-
dural assignment, the two operations are performed concurrently, so that RD receives the orig-
inal value of RA. The activity in both examples is launched by the clock undergoing a falling
edge transition.

The registers in a system are clocked simultaneously (concurrently). The D-input of each
flip-flop determines the value that will be assigned to its output, independently of the input to
any other flip-flop. To ensure synchronous operations in RTL design, and to ensure a match be-
tween an HDL model and the circuit synthesized from the model, it is necessary that non-
blocking procedural assignments be used for all variables that are assigned a value within an
edge-sensitive cyclic behavior (always clocked). The nonblocking assignment that appears in
an edge-sensitive cyclic behavior models the behavior of the hardware of a synchronous se-
quential circuit accurately,

HDL Operators

The Verilog HDL operators and their symbols used in RTL design are listed in Table 8.1. The
arithmetic. logic, and shift operators describe register transfer operations. The logical and re-
lational operators specify control conditions and have Boolean expressions as their arguments.

The operands of the arithmetic operators are numbers. The +, —, *, and/ operators form the
sum, difference. product, and quotient, respectively, of a pair of operands. The exponentiation
operator (**) was added to the language in 2001 and forms a double-precision floating-point
value from a base and exponent having a real, integer, or signed value. Negative numbers are
represented in 2's-complement form. The modulus operator produces the remainder from the
division of two numbers. For example, 14 % 3 evaluates to 2.

There are two types of logic operators for binary words: bitwise and reduction. The bitwise
operators perform a bit-by-bit operation on two vector operands to form a vector result. They
take each bit in one operand and perform the operation with the corresponding bit in the other
operand. Negation (~ ) is a unary operator; it complements the bits of a single vector operand
to form a vector result. The reduction operators are also unary, acting on a single operand and
producing a scalar (one-bit) result. They operate pairwise on the bits of a word. from right to
left, and yield a one-bit result. For example, the reduction NOR (~|) results in 0 with operand
00101 and in 1 with operand 00000. The result of applying the NOR operation on the first two
bits is used with the third bit, and so forth. Negation is not used as a reduction operator. Truth
tables for the bitwise operators are the same as those listed in Table 4.9 in Section 4.12 for the
corresponding Verilog primitive (e.g., the and primitive and the & bitwise operator have the
same truth table). The output of an AND gate with two scalar inputs is the same as the result
produced by operating on the two bits with the & operator.

The logical and relational operators are used to form Boolean expressions and can take vari-
ables or expressions as operands. (Note: A variable is also an expression.) Used basically for de-
termining true or false conditions, the logical and relational operators evaluate to 1 if the condition
expressed is true and to 0 if the condition is false. If the condition is ambiguous, they evaluate
to X. An operand that is a variable evaluates to 0 if the value of the variable is equal to zero and
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Table 8.1
Verilog 2001 HDL Operators

Operator Type Symbol Operation Performed

Arithmetic + addition
- subtraction
* multiplication
/ division
%o modulus
" exponentiation
Logic = negation (complement)
(bitwise & AND
or | OR
reduction) A exclusive-OR (XOR)
Logical ! negation
&& AND
[l OR
Shift >> logical right shift
<< logical left shift
>>> arithmetic right shift
<<< arithmetic left shift
ik concatenation
Relational > greater than
< less than
== equality
I= inequality

=== case equality

== case inequality

>z greater than or equal
<= less than or equal

to 1 if the value is not equal to zero. For example, if A = 1010 and B = 0000, then the ex-
pression A has the Boolean value 1 (the number in question is not equal to 0) and the expres-
sion B has the Boolean value 0. Results of other operations with these values are as follows:

A&&B=0 // logical AND
AllB=1 // logical OR
1A=0 /! logical complement

B=1 /f logical complement
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(A>B)=1 Il is greater than
(A==B)=0 /! identity (equality)
The relational operators === and !== test for bitwise equality (identity) and inequality in Ver-

ilog’s four-valued logic system. For example, if A = 0xx0 and B = 0xx0, the test A ===
would evaluate to true, but the test A == B would evaluate to x.

Verilog 2001 has logical and arithmetic shift operators. The logical shift operators shift a vec-
tor operand to the right or the left by a specified number of bits. The vacated bit positions are
filled with zeros. For example, if R = 11010, then the statement

R=R>>1;

shifts R to the right one position. The value of R that results from the logical right-shift operation
is 01101. In contrast, the arithmetic right-shift operator fills the vacated cell (the most significant
bit (MSB)) with its original contents when the word is shifted to the right. The arithmetic left-shift
operator fills the vacated cell with a 0 when the word is shifted to the left. The arithmetic right-
shift operator is used when the sign extension of a number is important. If R = 11010, then the
statement

R >>>1;

produces the result R = 11101; if R = 01101, it produces the result R = 00110. There is no
distinction between the logical left-shift and the arithmetic left-shift operators.

The concatenation operator provides a mechanism for appending multiple operands. It can
be used to specify a shift, including the bits transferred into the vacant positions. This aspect
of its operation was shown in HDL Example 6.1 for the shift register.

Expressions are evaluated from left to right, and their operators associate from left to right (with
the exception of the conditional operator) according to the precedence shown in Table 8.2. For
example, in the expression A + B — C, the value of B is added to A, and then C is subtracted
from the result. In the expression A + B/C, the value of B is divided by C, and then the result is
added to A because the division operator (/) has a higher precedence than the addition operator
(+). Use parentheses o establish precedence. For example, the expression (A + B)/C is not the
same as the expression A + B/C.

Loop Statements

Verilog HDL has four types of loops that execute procedural statements repeatedly: repeat, for-
ever, while, and for: All looping statements must appear inside an initial or always block.

The repeat loop executes the associated statements a specified number of times. The fol-
lowing is an example that was used previously:

initial
begin
clock = 1'b0;
repeat (16)
#5 clock = ~ clock;
end

This code produces eight clock cycles with a cycle time of 10 time units.
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Table 8.2
Verilog Operator Precedence

+ =~ &~ &|~| " ~" A~ (unary) Highest precedence

o

+— (binary)

<< > <<< >>>

| (binary)
&&
I

?: (conditional operator)

¥

{{{H} Lowest precedence

The forever loop causes unconditional, repetitive execution of a procedural statement or a
block of procedural statements. For example, the following loop produces a continuous clock
having a cycle time of 20 time units:

initial
begin
clock = 1'b0;
forever
#10 clock = ~ clock;
end

The while loop executes a statement or a block of statements repeatedly while an expres-
sion is true, If the expression is false to begin with, the statement is never executed. The fol-

lowing example illustrates the use of the while loop:

integer count;
initial
begin
count = 0;

while (count < 64)
#5 count = count + 1;
end
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The value of count is incremented from 0 to 63. Each increment is delayed by five time units,
and the loop exits at the count of 64.

In dealing with looping statements, it is sometimes convenient to use the integer data type
to index the loop. Integers are declared with the keyword integer, as in the previous example.
Although it is possible to use a reg variable to index a loop, sometimes it is more convenient 1o
declare an integer variable, rather than a reg, for counting purposes. Variables declared as data
type reg are stored as unsigned numbers. Those declared as data type integer are store as signed
numbers in 2°s-complement format. The default width of an integer is a minimum of 32 bits.

The for loop contains three parts separated by two semicolons:

* An initial condition.
* An expression to check for the terminating condition.
* An assignment to change the control variable.

The following is an example of a for loop:

for(j=0;j<8j=j+1)
begin
/I procedural statements go here
end

The for loop statement repeats the execution of the procedural statements eight times. The
control variable is j. the initial condition is j = 0, and the loop is repeated as long as j is less
than 8. After each execution of the loop statement, the value of j is incremented by 1.

A description of a two-to-four-line decoder using a for loop is shown in HDL Example 8.1.
Since output Y is evaluated in a procedural statement, it must be declared as type reg. The con-
trol variable for the loop is the integer k. When the loop is expanded (unrolled), we get the fol-
lowing four conditions (/N and Y are in binary, and the index for ¥ is in decimal):

if /N =00 then Y(0)=1; else Y(0)=0;
if IN=01then Y(1)=1; else Y(1)=0;
if IN=10then Y(2)=1; else Y(2)=0;
if IN=11then Y(3)=1; else Y(3)=0;

HDL Example 8.1

// Description of 2 x 4 decoder using a for loop statement
module decoder (IN, Y);

input [1: O] IN; // Two binary inputs

output [3:01Y; {/ Four binary outputs

reg [3:01 Y:

integer K; {l Control (index) variable for loop
always @ (IN)

for(k=0;k<=3;k=k+1)
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if IN==k)Y[k]=1;
else Y[k] = 0;
endmodule

Logic Synthesis

Logic synthesis is the automatic process by which a computer-based program (i.e., a synthesis
tool) transforms an HDL model of a logic circuit into an optimized netlist of gates that perform
the operations specified by the source code. There are various target technologies that implement
the synthesized design in hardware. The effective use of an HDL description requires that designers
adopt a vendor-specific style suitable for the particular synthesis tools. The type of I1Cs that im-
plement the design may be an application-specific integrated circuit (ASIC), a programmable
logic device (PLD), or a field-programmable gate array (FPGA). Logic synthesis is widely used
in industry to design and implement large circuits efficiently, correctly, and rapidly.

Logic synthesis tools interpret the source code of the hardware description language and
translate it into an optimized gate structure, accomplishing (correctly) all of the work that
would be done by manual methods using Karnaugh maps. Designs written in Verilog or a com-
parable language for the purpose of logic synthesis tend to be at the register transfer level. This
is because the HDL constructs used in an RTL description can be converted into a gate-level
description in a straightforward manner. The following examples discuss how a logic synthe-
sizer can interpret an HDL construct and convert it into a gate structure.

The continuous assignment (assign) statement is used to describe combinational circuits. In
an HDL, it represents a Boolean equation for a logic circuit. A continuous assignment with a
Boolean expression for the right-hand side of the assignment statement is synthesized into the
corresponding gate circuit implementing the expression. An expression with an addition operator
(-+) is interpreted as a binary adder with full-adder circuits. An expression with a subtraction
operator (—) is converted into a gate-level subtractor consisting of full adders and exclusive-
OR gates (Fig. 4.13). A statement with a conditional operator such as

assignY =S ?In_1:In_0;

translates into a two-to-one-line multiplexer with control input § and data inputs fn_1 and In_0,
A statement with multiple conditional operators specifies a larger multiplexer.

A cyclic behavior (always . ..) may imply a combinational or sequential circuit, depending
on whether the event control expression is level sensitive or edge sensitive. A synthesis tool will
interpret as combinational logic a level-sensitive cyclic behavior whose event control expression
is sensitive to every variable that is referenced within the behavior (e.g., by the variable’s appearing
in the right-hand side of an assignment statement). The event control expression in a description
of combinational logic may not be sensitive to an edge of any signal. For example,

always @ (In_1 or In_0 or S)
if(S)Y=In_1;
else Y=In_0;
translates into a two-to-one-line multiplexer. As an alternative, the case statement may be used

to imply large multiplexers. The casex statement treats the logic values x and z as don't-cares
when they appear in either the case expression or a case item.
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An edge-sensitive cyclic behavior (e.g., always @ (posedge clock)) specifies a synchro-
nous (clocked) sequential circuit. The implementation of the corresponding circuit consists of
D flip-flops and the gates that implement the synchronous register transfer operations specified
by the statements associated with the event control expression. Examples of such circuits are reg-
isters and counters, A sequential circuit description with a case statement translates into a con-
trol circuit with D flip-flops and gates that form the inputs to the flip-flops. Thus, each statement
in an RTL description is interpreted by the synthesizer and assigned to a corresponding gate
and flip-flop circuit. For synthesizable sequential circuits, the event control expression must be
sensitive to the positive or the negative edge of the clock (synchronizing signal), but not to both.

A simplified flowchart of the process used by industry to design digital systems is shown
in Fig. 8.1. The RTL description of the HDL design is simulated and checked for proper

FIGURE 8.1
A simplified flowchart for HDL-based modeling, verification, and synthesis
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operation. Its operational features must match those given in the specification for the behav-
ior of the circuit. The test bench provides the stimulus signals to the simulator. 1f the result of
the simulation is not satisfactory, the HDL description is corrected and checked again. After the
simulation run shows a valid design, the RTL description is ready to be compiled by the logic
synthesizer. All errors (syntax and functional) in the description must be eliminated before
synthesis. The synthesis tool generates a netlist equivalent to a gate-level description of the de-
sign as it is represented by the model. If the model fails to express the functionality of the spec-
ification, the circuit will fail to do so also. The gate-level circuit is simulated with the same set
of stimuli used to check the RTL design. If any corrections are needed, the process is repeat-
ed until a satisfactory simulation is achieved. The results of the two simulations are compared
to see if they match. If they do not, the designer must change the RTL description to correct any
errors in the design. Then the description is again compiled by the logic synthesizer to generate
a new gate-level description. Once the designer is satisfied with the results of all simulation
tests, the design of the circuit is ready for physical implementation in a technology. In practice,
additional testing will be performed to verify that the timing specifications of the circuit can be
met in the chosen hardware technology. That issue is not within the scope of this text.

Logic synthesis provides several advantages to the designer. It takes less time to write an
HDL description and synthesize a gate-level realization than it does to develop the circuit by man-
ual entry from schematic diagrams. The ease of changing the description facilitates exploration
of design alternatives. It is faster, easier, less expensive, and less risky to check the validity of
the design by simulation than it is to produce a hardware prototype for evaluation. A schemat-
ic and the database for fabricating the integrated circuit can be generated automatically by
synthesis tools. The HDL model can be compiled by different tools into different technologies
(e.g., ASIC cells or FPGAs), providing multiple returns on the investment to create the model.

8.4 ALGORITHMIC STATE MACHINES (ASMs)

The binary information stored in a digital system can be classified as either data or control in-
formation. Data are discrete elements of information (binary words) that are manipulated by per-
forming arithmetic, logic, shift, and other similar data-processing operations. These operations
are implemented with digital components such as adders. decoders, multiplexers, counters. and
shift registers. Control information provides command signals that coordinate and execute the var-
ious operations in the data section in order to accomplish the desired data-processing tasks.

The logic design of a digital system can be divided into two distinct parts. One part is con-
cerned with the design of the digital circuits that perform the data-processing operations. The
other part is concerned with the design of the control circuits that determine the sequence in
which the various actions are performed.

The relationship between the control logic and the data-processing operations in a digital sys-
tem is shown in Fig. 8.2. The data-processing path, commonly referred to as the datapath unit,
manipulates data in registers according to the system’s requirements. The control unit issues a
sequence of commands to the datapath unit. Note that an internal feedback path from the data-
path unit to the control unit provides status conditions that the control unit uses together with
the external (primary) inputs to determine the sequence of control signals (outputs of the control
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FIGURE 8.2

Control and datapath interaction

unit) that direct the operation of the datapath unit. We'll see later that understanding how 1o
model this feedback relationship with an HDL is very important,

The control logic that generates the signals for sequencing the operations in the datapath unit
is a finite state machine (FSM), i.e., a synchronous sequential circuit. The control commands
for the system are produced by the FSM as functions of the primary inputs, the status signals,
and the state of the machine. In a given state, the outputs of the controller are the inputs to the
datapath unit and determine the operations that it will execute. Depending on status conditions
and other external inputs, the FSM goes to its next state to initiate other operations. The digi-
tal circuits that act as the control logic provide a time sequence of signals for initiating the op-
erations in the datapath and also determine the next state of the control subsystem itself.

The control sequence and datapath tasks of a digital system are specified by means of a
hardware algorithm. An algorithm consists of a finite number of procedural steps that specify
how to obtain a solution to a problem. A hardware algorithm is a procedure for solving the
problem with a given piece of equipment. The most challenging and creative part of digital de-
sign is the formulation of hardware algorithms for achieving required objectives. The goal to
implement the algorithms in silicon as an integrated circuit.

A flowchart is a convenient way to specify the sequence of procedural steps and decision paths
for an algorithm. A flowchart for a hardware algorithm translates the verbal instructions to an
information diagram that enumerates the sequence of operations together with the conditions nec-
essary for their execution. A flowchart that has been developed specifically to define digital
hardware algorithms is called an algorithmic state gnachine (ASM) chart. A state machine is
another term for a sequential circuit, which is the basic structure of a digital system.

ASM Chart

The ASM chart resembles a conventional flowchart, but is interpreted somewhat differently.
A conventional flowchart describes the procedural steps and decision paths of an algorithm in
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¢ Binary code ¢ 0101

FICURE 8.3
ASM chart state box

a sequential manner, without taking into consideration their time relationship. The ASM chart
describes the sequence of events. as well as the timing relationship between the states of a se-
quential controller and the events that occur while going from one state to the next (i.e., the
events that are synchronous with changes in the state), The chart is adapted to specify accurately
the control sequence and datapath operations in a digital system, taking into consideration the
constraints of digital hardware.

The ASM chart is composed of three basic elements: the state box, the decision box, and the
conditional box. The boxes themselves are connected by directed edges indicating the se-
quential precedence and evolution of the states as the machine operates. There are various
ways to attach information to an ASM chart. In one, a state in the control sequence is indicat-
ed by a state box, as shown in Fig. 8.3(a). The shape of the state box is a rectangle within
which are written register operations or the names of output signals that the control generates
while being in the indicated state. The state is given a symbolic name, which is placed within
the upper left corner of the box. The binary code assigned to the state is placed at the upper right
corner. (The state symbol and code can be placed in other places as well,) Figure 8.3(b) gives
an example of a state box. The state has the symbolic name S_pause, and the binary code as-
signed to it is 0101. Inside the box is written the register operation R < 0, which indicates
that register R is to be cleared to 0. The name Starr_OP_A inside the box indicates. for exam-
ple, a Moore-type output signal that is asserted while the machine is in state S_pause and that
launches a certain operation in the datapath unit.

The style of state box shown in Fig. 8.3(b) is sometimes used in ASM charts, but it can lead
to confusion about when the register operation R <— () is to execute. Although the operation is
written inside the state box, it actually occurs when the machine makes a transition from
S_pause to its next state. In fact, writing the register operation within the state box is a way (al-
beit possibly confusing) to indicate that the controller must assert a signal that will cause the
register operation to occur when the machine changes state. Later we'll introduce a chart and
notation that are more suited to digital design and that will eliminate any ambiguity about the
register operations controlled by a state machine.

The decision box of an ASM chart describes the effect of an input (i.e., a primary, or external,
input or a status, or internal, signal) on the control subsystem. The box is diamond shaped and has
two or more exit paths, as shown in Fig. 8.4, The input condition to be tested is written inside the
box. One or the other exit path is taken, depending on the evaluation of the condition. In the bi-
nary case, one path is taken if the condition is true and another when the condition is false. When
an input condition is assigned a binary value, the two paths are indicated by 1 and 0. respectively.
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Exit path Exit path

Exit path

FIGURE 8.4
ASM chart decision box

Reser_b Reser_b

Binary code

e

(a) (b) (<)

FIGURE 8.5
ASM chart conditional box

The state and decision boxes of an ASM chart are similar to those used in conventional
flowcharts. The third element, the conditional box, is unique to the ASM chart. The shape of
the conditional box is shown in Fig. 8.5(a). Its rounded corners differentiate it from the state
box. The input path to the conditional box must come from one of the exit paths of a decision
box. The outputs listed inside the conditional box are generated as Mealy-type signals during
a given state; the register operations listed in the conditional box are associated with a transi-
tion from the state. Figure 8.5(b) shows an example with a conditional box. The control gen-
erates the output signal Srart when in state S_/ and checks the status of input Flag. If Flag = 1,
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then R is cleared to 0; otherwise, R remains unchanged. In either case, the next state is §_2. A
register operation is associated with §_2. We again note that this style of chart can be a source
of confusion, because the state machine does not execute the indicated register operation R «— 0
when itis in S_/ or the operation F «— G when it is in S_2. The notation actually indicates that
when the controller is in S_/, it must assert a Mealy-type signal that will cause the register op-
eration R «<— 0 to execute in the datapath unit, subject to the condition that Flag = 0. Likewise,
in state §_2, the controller must generate a Moore-type output signal that causes the register
operation F «<— G to execute in the datapath unit. The operations in the datapath unit are syn-
chronized to the clock edge that causes the state to move from S_/ to §_2 and from §_2 to
§_3, respectively. Thus, the control signal generated in a given state affects the operation of a
register in the datapath when the next clock transition occurs. The result of the operation is
apparent in the next state.

The ASM chart in Fig. 8.5(b) mixes descriptions of the datapath and the controller. An ASM
chart for only the controller is shown in Fig. 8.5(c), in which the register operations are omit-
ted. In their place are the control signals that must be generated by the control unit to launch
the operations of the datapath unit. This chart is useful for describing the controller, but it does
not contain adequate information about the datapath. (We'll address this issue later.)

ASM Block

An ASM block is a structure consisting of one state box and all the decision and conditional
boxes connected to its exit path. An ASM block has one entrance and any number of exit paths
represented by the structure of the decision boxes. An ASM chart consists of one or more
interconnected blocks. An example of an ASM block is given in Fig. 8.6, Associated with state

Reset_b

FIGURE 8.6
ASM block
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S_0 are two decision boxes and one conditional box. The diagram distinguishes the block with
dashed lines around the entire structure, but this is not usually done, since the ASM chart
uniquely defines each block from its structure. A state box without any decision or condition-
al boxes constitutes a simple block.

Each block in the ASM chart describes the state of the system during one clock-pulse in-
terval (i.e., the interval between two successive active edges of the clock). The operations with-
in the state and conditional boxes in Fig. 8.6(a) are initiated by a common clock pulse when
the state of the controller transitions from S_0 to its next state, The same clock pulse transfers
the system controller to one of the next states, S_/, §_2, or S_3, as dictated by the binary val-
ues of £ and F. The ASM chart for the controller alone is shown in Fig. 8.6(b). The Moore-type
signal incr_A is asserted while the machine is in S_0; the Mealy-type signal Clear_R is gen-
erated conditionally when the state is S_0 and E is asserted. In general, the Moore-type outputs
of the controller are generated unconditionally and are indicated within a state box; the Mealy-
type outputs are generated conditionally and are indicated in the conditional boxes connected
to the edges that leave a decision box.

The ASM chart is similar to a state diagram. Each state block is equivalent to a state in a
sequential circuit. The decision box is equivalent to the binary information written along the
directed lines that connect two states in a state diagram. As a consequence, it is sometimes
convenient to convert the chart into a state diagram and then use sequential circuit procedures
to design the control logic. As an illustration, the ASM chart of Fig. 8.6 is drawn as a state di-
agram in Fig. 8.7. The states are symbolized by circles, with their binary values written inside.
The directed lines indicate the conditions that determine the next state. The unconditional and
conditional operations that must be performed in the datapath unit are not indicated in the state
diagram.

Simplifications

A binary decision box of an ASM chart can be simplified by labeling only the edge corre-
sponding to the asserted decision variable and leaving the other edge without a label. A further
simplification is to omit the edges corresponding to the state transitions that occur when a reset
condition is asserted. Output signals that are not asserted are not shown on the chart: the pres-
ence of the name of an output signal indicates that it is asserted.

FIGURE 8.7
State diagram equivalent to the ASM chart of Fig. 8.6
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Timing Considerations

The timing for all registers and flip-flops in a digital system is controlled by a master-clock gen-
erator. The clock pulses are applied not only to the registers of the datapath, but also to all the
flip-flops in the state machine implementing the control unit. Inputs are also synchronized to
the clock, because they are normally generated as outputs of another circuit that uses the same
clock signals. If the input signal changes at an arbitrary time independently of the clock, we
call it an asynchronous input. Asynchronous inputs may cause a variety of problems, as dis-
cussed in Chapter 9. To simplify the design, we will assume that all inputs are synchronized
with the clock and change state in response to an edge transition.

The major difference between a conventional flowchart and an ASM chart is in interpret-
ing the time relationship among the various operations. For example, if Fig. 8.6 were a con-
ventional flowchart, then the operations listed would be considered to follow one after another
in sequence: First register A is incremented, and only then is £ evaluated. If £ = 1, then reg-
ister R is cleared and control goes to state S_3. Otherwise (if £ = 0), the next step is to eval-
uate ¥ and go to state §_1 or §_2. In contrast, an ASM chart considers the entire block as one
unit. All the register operations that are specified within the block must occur in synchronism
at the edge transition of the same clock pulse while the system changes from S_0 to the next
state. This sequence of events is presented pictorially in Fig. 8.8. We assume positive-edge
triggering of all flip-flops. An asserted asynchronous reset signal (reset_b) transfers the con-
trol circuit into state §_0. While in state S_0, the control circuits check inputs E and F and
generate appropriate signals accordingly. If reser_b is not asserted, the following operations
occur simultaneously at the next positive edge of the clock:

1. Register A is incremented.
2. If E = 1, register R is cleared.
3. Control transfers to the next state, as specified in Fig. 8.7.

Note that the two operations in the datapath and the change of state in the control logic occur
at the same time. Note also that the ASM chart in Fig. 8.6(a) indicates the register operations
that must occur in the datapath unit. but does not indicate the control signal that is to be formed
by the control unit. Conversely, the chart in Fig. 8.6(b) indicates the control signals, but not the
datapath operations. We will now present an ASMD chart to provide the clarity and complete
information needed by logic designers.

Positive edge of Clock

| |

Present state —hl‘— Next state
(S.0) (S JorS_2orS_3)

FIGURE 8.8
Transition between states
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ASMD Chart

Algorithmic state machine and datapath (ASMD) charts were developed to clarify the infor-
mation displayed by ASM charts and to provide an effective tool for designing a control unit
for a given datapath unit, An ASMD chart differs from an ASM chart in three important ways:
(1) An ASMD chart does not list register operations within a state box, (2) the edges of an
ASMD chart are annotated with register operations that are concurrent with the state transition
indicated by the edge, and (3) an ASMD chart includes conditional boxes identifying the sig-
nals which control the register operations that annotate the edges of the chart. Thus, an ASMD
chart associates register operations with state transitions rather than with states.

Designers form an ASMD chart in a three-step process that creates an annotated and com-
pletely specified ASM chart for the controller of a datapath unit. The steps are to (1) form
an ASM chart displaying only how the inputs to the controller determine its state transitions,
(2) convert the ASM chart to an ASMD chart by annotating the edges of the ASM chart to in-
dicate the concurrent register operations of the datapath unit, and (3) modify the ASMD chart
to identify the control signals that are generated by the controller and that cause the indicated
register operations in the datapath unit, The ASMD chart produced by this process clearly and
completely specifies the finite state machine of the controller and identifies the register oper-
ations of the given datapath.

One important use of a state machine is to control register operations on a datapath in a se-
quential machine that has been partitioned into a controller and a datapath. An ASMD chart links
the ASM chart of the controller to the datapath it controls in a manner that serves as a univer-
sal model representing all synchronous digital hardware design. ASMD charts help clarify the
design of a sequential machine by separating the design of its datapath from the design of the
controller, while maintaining a clear relationship between the two units. Register operations that
occur concurrently with state transitions are annotated on a path of the chart, rather than in
state boxes or in conditional boxes on the path, because these registers are not part of the con-
troller. The outputs generated by the controller are the signals that control the registers of the
datapath and cause the register operations annotated on the ASMD chart.

8.5 DESIGN EXAMPLE

We will now present a simple example demonstrating the use of the ASMD chart and the regis-
ter transfer representation. We start from the initial specifications of a system and proceed with
the development of an appropriate ASMD chart from which the digital hardware is then designed.
The datapath unit is to consist of two JK flip-flops E and F, and one four-bit binary count-
er A[3: 0]. The individual flip-flops in A are denoted by A3, A;, A, and Ay, with A; holding
the most significant bit of the count. A signal, Szarr, initiates the system's operation by clear-
ing the counter A and flip-flop F. At each subsequent clock pulse, the counter is incremented
by 1 until the operations stop. Counter bits A, and A; determine the sequence of operations:

If A, = 0, E is cleared to 0 and the count continues.

If A, = 1. Eis setto 1; then, if A3 = 0, the count continues, but if Az = 1, Fis set to
1 on the next clock pulse and the system stops counting.
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Then, if Srart = 0, the system remains in the initial state, but if Starr = 1, the opera-
tion cycle repeats.

A block diagram of the system’s architecture is shown in Fig. 8.9(a), with (1) the registers
of the datapath unit, (2) the external (primary) input signals, (3) the status signals fed back
from the datapath unit to the control unit, and (4) the control signals generated by the control
unit and input to the datapath unit. Note that the names of the control signals clearly indicate
the operations that they cause to be executed in the datapath unit. For example, clr_A_F clears
registers A and F, The name of the signal reser_b (alternatively, reser_bar) indicates that the
reset action is active low. The internal details of each unit are not shown.

ASMD Chart

An ASMD chart for the system is shown in Fig. 8.9(b) for asynchronous reset action and in
Fig. 8.9(c) for synchronous reset action. The chart shows the state transitions of the controller
and the datapath operations associated with those transitions. The chart is not in its final form,
for it does not identify the control signals generated by the controller. The nonblocking Ver-
ilog operator (<= is shown instead of the arrow ( «— ) for register transfer operations because
we will ultimately use the ASMD chart to write a Verilog description of the system.

When the reset action is synchronous, the transition to the reset state is synchronous with
the clock. This transition is shown in the diagram, but a/l other synchronous reset paths are omit-
ted for clarity. The system remains in the reset state, S_idle, until Srart is asserted. When that
happens (i.e., Srarr = 1), the state moves to S_I. Ar the next clock edge, depending on the
values of A, and Az (decoded in a priority order), the state returns to S_/ or goes to S_2. From
§_2. it moves unconditionally 1o S_idle, where it awaits another assertion of Srart.

The edges of the chart represent the state transitions that occur at the active (i.e., synchro-
nizing) edge of the clock (e.g., the rising edge) and are annotated with the register operations
that are to occur in the datapath. With Srarr asserted in S_idle, the state will transition to S_/
and the registers A and F will be cleared. Note that, on the one hand, if a register operation is
annotated on the edge leaving a state box, the operation occurs unconditionally and will be
controlled by a Moore-type signal. For example, register A is incremented at every clock edge
that occurs while the machine is in the state §_/. On the other hand, the register operation set-
ting register E annotates the edge leaving the decision box for A,. The signal controlling the
operation will be a Mealy-type signal asserted when the system is in state S_/ and A, has the
value 1. Likewise, the control signal clearing A and F is asserted conditionally: The system is
in state S_idle and Srart is asserted,

In addition to showing that the counter is incremented in state S_/, the annotated paths
show that other operations occur conditionally with the same clock edge:

Either E is cleared and control stays in state S_J/ (A5 = 0) or
E is set and control stays in state S_J {A;4; = 10) or
E is set and control goes to state S_2 (A,4; = 11).

When control is in state §_2, a Moore-type control signal must be asserted 1o set flip-flop F to
1, and the state returns to S_idle at the next active edge of the clock.
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Status signals

Starr

reser_b
clock

Note: A3 denotes A[3].

A2 denotes A[2],

<= denotes nonblocking assignment
reset_b denotes active-low reset condition

reset_b

Fe=1 F<=1

(b) (c) (d)
FIGURE 8.9
(a) Block diagram for design example
(b) ASMD chart for controller state transitions, asynchronous reset
(c) ASMD chart for controller state transitions, synchronous reset
(d) ASMD chart for a completely specified controller, asynchronous reset
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The third and final step in creating the ASMD chart is to insert conditional boxes for the sig-
nals generated by the controller or to insert Moore-type signals in the state boxes, as shown in
Fig. 8.9(d). The signal c/r_A_F is generated conditionally in state S_idle, incr_A is generated
unconditionally in S_/, cIr_E and ser_E are generated conditionally in S_17, and ser_F is gen-
erated unconditionally in §_2. The ASM chart has three states and three blocks. The block as-
sociated with S_idle consists of the state box, one decision box, and one conditional box. The
block associated with S_2 consists of only the state box. In addition to clock and reser_b, the
control logic has one external input, Starz, and two status inputs, A, and As.

In this example, we have shown how a verbal (text) description (specification) of a design
is translated into an ASMD chart that completely describes the controller for the datapath, in-
dicating the control signals and their associated register operations. This design example does
not have a practical application, and in general. depending on the interpretation, the ASMD chart
produced by the three-step design process for the controller may be simplified and formulated
differently. However, once the ASMD chart is established, the procedure for designing the
circuit is straightforward. In practice, designers use the ASMD chart to write Verilog models
of the controller and the datapath and then synthesize a circuit directly from the Verilog de-
seription. We will first design the system manually and then write the HDL description, keep-
ing synthesis as an optional step for those who have access to synthesis tools.

Timing Sequence

Every block in an ASMD chart specifies the signals which control the operations that are to be
initiated by one commeon clock pulse. The control signals specified within the state and con-
ditional boxes in the block are formed while the controller is in the indicated state, and the an-
notated operations occur in the datapath unit when the state makes a transition along an edge
that exits the state. The change from one state to the next is performed in the control logic. In
order to appreciate the timing relationship involved, we will list the step-by-step sequence of
operations after each clock edge. beginning with an assertion of the signal Srart until the sys-
tem returns to the reset (initial) state, S_idle.

Table 8.3 shows the binary values of the counter and the two flip-flops after every clock
pulse. The table also shows separately the status of A, and As, as well as the present state of
the controller. We start with state S_J right after the input signal Start has caused the counter
and flip-flop F to be cleared. We will assume that the machine had been running before it en-
tered S_idle. instead of entering it from a reset condition. Therefore, the value of E is assumed
to be 1. because E is set to 1 when the machine enters §_2, before moving to S_idle (as shown
at the bottom of the table), and because E does not change during the transition from S_idle to
S_J. The system stays in state S_/ during the next 13 clock pulses. Each pulse increments the
counter and either clears or sets £, Note the relationship between the time at which A; be-
comes a | and the time at which Eis setto 1. When A = (A3 A; A; Ap) 0011, the next (4th)
clock pulse increments the counter to 0100, but that same clock edge sees the value of A, as
0. so E remains cleared. The next (5th) pulse changes the counter from 0100 to 0101, and be-
cause A, is equal to | before the clock pulse arrives, E is set to 1. Similarly, E is cleared 10 0
not when the count goes from 0111 to 1000, but when it goes from 1000 to 1001, which is
when A; is 0 in the present value of the counter.
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Table 8.3
Sequence of Operations for Design Example
Counter Flip-Flops

Az A A A E F Conditions State
0 0 0 0 | 0 A;=0,A3=0 S_1
0 0 0 1 0 0

0 0 1 0 0 0

0 0 1 1 0 0

o 1 0 o0 0 o0 Ar=1,A3=0

0 1 0 1 | 0

0 I 1 0 1 0

0 ! I 1 1 0

1 0 0 o0 1 0 Ay=0,4; = 1

1 0 0 1 0 0

1 0 I 0 0 0

] 0 1 1 0 0

1 1 0 0 0 0 Ar=1,A3 =1

1 1 0 1 1 0 52
1 1 0 1 1 1 S_idle

When the count reaches 1100, both A, and A; are equal to 1. The next clock edge incre-
ments A by 1, sets E to 1, and transfers control to state 5_2. Control stays in S_2 for only one
clock period. The clock edge associated with the path leaving §_2 sets flip-flop F 1o 1 and
transfers control to state S_idle. The system stays in the initial state S_idle as long as Start
is equal to 0.

From an observation of Table 8.3, it may seem that the operations performed on E are
delayed by one clock pulse. This is the difference between an ASMD chart and a conven-
tional flowchart. If Fig. 8.9(d) were a conventional flowchart, we would assume that A is
first incremented and the incremented value would have been used to check the status of A,.
The operations that are performed in the digital hardware as specified by a block in the
ASMD chart occur during the same clock cycle and not in a sequence of operations following
each other in time, as is the usual interpretation in a conventional flowchart. Thus, the value
of A, to be considered in the decision box is taken from the value of the counter in the
present state and before it is incremented. This is because the decision box for £ belongs
with the same block as state S_I. The digital circuits in the control unit generate the signals
for all the operations specified in the present block prior to the arrival of the next clock pulse.
The next clock edge executes all the operations in the registers and flip-flops, including
the flip-flops in the controller that determine the next state, using the present values of the
output signals of the controller. Thus, the signals that control the operations in the datapath
unit are formed in the controller in the clock cycle (control state) preceding the clock edge
at which the operations execute.
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Controller and Datapath Hardware Design

The ASMD chart provides all the information needed to design the digital system—the datapath
and the controller. The actual boundary between the hardware of the controller and that of the
datapath can be arbitrary, but we advocate, first, that the datapath unit contain only the hard-
ware associated with its operations and the logic required, perhaps, to form status signals used
by the controller, and, second, that the control unit contain all of the logic required to gener-
ate the signals that control the operations of the datapath unit. The requirements for the design
of the datapath are indicated by the control signals inside the state and conditional boxes of the
ASMD chart and are specified by the annotations of the edges indicating datapath operations.
The control logic is determined from the decision boxes and the required state transitions. The
hardware configuration of the datapath and controller is shown in Fig. 8.10,

Design_Example
Controller
Start
Datapath
reset_b 2
clock F
AJ_
]
FIGURE 8.10

Datapath and controller for design example
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Note that the input signals of the control unit are the external (primary) inputs (Srarz, reser_b.
and clock) and the status signals from the datapath (A; and A3). The status signals provide in-
formation about the present condition of the datapath. This information, together with the pri-
mary inputs and information about the present state of the machine, is used to form the output
of the controller and the value of the next state. The outputs of the controller are inputs to the
datapath and determine which operations will be executed when the clock undergoes a transi-
tion. Note, also, that the state of the control is not an output of the control unit, even if the en-
tire design is encapsulated in only one module.

The control subsystem is shown in Fig. 8.10 with only its inputs and outputs, with names match-
ing those of the ASMD chart. The detailed design of the controller is considered subsequently.
The datapath unit consists of a four-bit binary counter and two JK flip-flops. The counter is sim-
ilar to the one shown in Fig. 6.12, except that additional internal gates are required for the syn-
chronous clear operation. The counter is incremented with every clock pulse when the controller
state is §_/. It is cleared only when control is at state S_idle and Start is equal to 1. The logic for
the signal elr_A_F will be included in the controller and requires an AND gate to guarantee that
both conditions are present. Similarly, we can anticipate that the controller will use AND gates to
form signals ser_E and clr_E. Depending on whether the controller is in state S_/ and whether A;
is asserted, ser_F controls flip-flop F and is asserted unconditionally during state S_2. Note that
all flip-flops and registers, including the flip-flops in the control unit, use a common clock.

Register Transfer Representation

A digital system is represented at the register transfer level by specifying the registers in the
system, the operations performed, and the control sequence. The register operations and con-
trol information can be specified with an ASMD chart. It is convenient to separate the control
logic and the register operations for the datapath. The ASMD chart provides this separation and
a clear sequence of steps to design a controller for a datapath. The control information and
register transfer operations can also be represented separately, as shown in Fig. 8.11. The state
diagram specifies the control sequence, and the register operations are represented by the reg-
ister transfer notation introduced in Section 8.2. The state transition and the signal controlling
the register operation are shown with the operation. This representation is an alternative to the
representation of the system described in the ASMD chart of Fig. 8.9(d). Only the ASMD chart
is really needed, but the state diagram for the controller is an alternative representation that is
useful in manual design. The information for the state diagram is taken directly from the ASMD
chart. The state names are specified in each state box. The conditions that cause a change of
state are specified inside the diamond-shaped decision boxes of the ASMD chart and are used
to annotate the state diagram. The directed lines between states and the condition associated
with each follow the same path as in the ASMD chart. The register transfer operations for each
of the three states are listed following the name of the state. They are taken from the state
boxes or the annotated edges of the ASMD chart.

State Table

The state diagram can be converted into a state table from which the sequential circuit of the
controller can be designed. First, we must assign binary values to each state in the ASMD
chart. For n flip-flops in the control sequential circuit, the ASMD chart can accommodate up



Section 8.5 Design Example 359

S_idle —» S_|, clr_A_F; A—( F<——

S1 ——= 8.1l incr A: A=—A+1
if {A; = 1) then set_E: 51
if (A, = 0} then cir_E: E <+—1

8§ 2 —— 8 idle set_F: Fo-—

(b)

FIGURE 8.11
Register transfer-level description of design example

to 2" states. A chart with 3 or 4 states requires a sequential circuit with two flip-flops. With 5
to 8 states, there is a need for three flip-flops. Each combination of flip-flop values represents
a binary number for one of the states.

A state table for a controller is a list of present states and inputs and their corresponding next
states and outputs. In most cases, there are many don’t-care input conditions that must be in-
cluded. so it is advisable to arrange the state table to take those conditions into consideration.
We assign the following binary values to the three states: § idle = 00,5/ = 0l,and 5. 2 = 11.
Binary state 10 is not used and will be treated as a don't-care condition. The state table corre-
sponding to the state diagram is shown in Table 8.4. Two flip-flops are needed, and they are

Table 8.4
State Table for the Controller of Fig. 8.10
Present Next
State Inputs State Outputs
v o=
Present-State 0 T, T !
Symbol G G Stat A, A; G G S 5 § 3 E
S_idle 0 0 0 X X 0 0 0 0 0 0 0
S_idle 0 0 1 X X 0 1 0 0 0 1 0
Ll 0 | X 0 X 0 | 0 | 0 0 1
S_1 0 I X 1 0 0 1 1 0 0 0 1
5_1 0 | X | 1 | 1 1 0 0 0 1
5.2 1 1 X X X 0o o0 0 0 1 0 0




360

Chapter 8 Design at the Register Transfer Level

labeled G| and Gy, There are three inputs and five outputs. The inputs are taken from the con-
ditions in the decision boxes. The outputs depend on the inputs and the present state of the con-
trol. Note that there is a row in the table for each possible transition between states. Initial state
00 goes to state 01 or stays in 00, depending on the value of input Starr. The other two inputs
are marked with don't-care X's, as they do not determine the next state in this case. While the
system is in binary state 00 with Starr = 1, the control unit provides an output labeled clr_A_F
to initiate the required register operations. The transition from binary state 01 depends on inputs
A and A;. The sysiem goes to binary state 11 only if AjA; = 11: otherwise, it remains in
binary state O1. Finally. binary state 11 goes to 00 independently of the input variables.

Control Logic

The procedure for designing a sequential circuit starting from a state table was presented in
Chapter 5. If this procedure is applied to Table 8.4, we need to use five-variable maps to sim-
plify the input equations. This is because there are five variables listed under the present-state
and input columns of the table. Instead of using maps to simplify the input equations, we can
obtain them directly from the state table by inspection. To design the sequential circuit of the
controller with D flip-flops, it is necessary to go over the next-state columns in the state table
and derive all the conditions that must set each flip-flop to 1. From Table 8.4, we note that the
next-state column of G; has a single 1 in the fifth row. The D input of flip-flop G, must be equal
to 1 during present state S_/ when both inputs A; and A are equal to 1. This condition is
expressed with the D flip-flop input equation

DGI — S_f ArAs
Similarly, the next-state column of Gy has four 1's, and the condition for setting this flip-flop is
Dgy = Start S idle + § 1

To derive the five output functions, we can exploit the fact that binary state 10 is not used,
which simplifies the equation for clr_A_F and enables us to obtain the following simplified set
of output equations:

set E =S 1A;
clr E = § 1A'
set F =82

clr A F = Start S idle
incr A= S 1

The logic diagram showing the internal detail of the controller of Fig. 8.10 is drawn in Fig. 8.12.
Note that although we derived the output equations from Table 8.4, they can also be obtained
directly by inspection of Fig. 8.9(d). This simple example illustrates the manual design of a con-
troller for a datapath, using an ASMD chart as a starting point. The fact that synthesis tools au-
tomatically execute these steps should be appreciated.
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FIGURE 8.12
Logic diagram of the control unit for Fig. 8.10

8.6 HDL DESCRIPTION OF DESIGN EXAMPLE

In previous chapters, we gave examples of HDL descriptions of combinational circuits,
sequential circuits, and various standard components such as multiplexers, counters, and reg-
isters. We are now in a position to incorporate these components into the description of a spe-
cific design. As mentioned previously, a design can be described either at the structural or
behavioral level. Behavioral descriptions may be classified as being either at the register trans-
fer level or at an abstract algorithmic level. Consequently, we now consider three levels of
design: structural description, RTL description, and algorithmic-based behavioral description.

The structural description is the lowest and most detailed level. The digital system is spec-
ified in terms of the physical components and their interconnection. The various components
may include gates, flip-flops, and standard circuits such as multiplexers and counters. The de-
sign is hierarchically decomposed into functional units, and each unit is described by an HDL
module. A top-level module combines the entire system by instantiating all the lower level
modules. This style of description requires that the designer have sufficient experience not
only to understand the functionality of the system, but also to implement it by selecting and con-
necting other functional elements.

The RTL description specifies the digital system in terms of the registers, the operations
performed, and the control that sequences the operations. This type of description simplifies
the design process because it consists of procedural statements that determine the relationship
between the various operations of the design without reference to any specific structure. The
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RTL description implies a certain hardware configuration among the registers. allowing the
designer to create a design that can be synthesized automatically, rather than manually. into stan-
dard digital components,

The algorithmic-based behavioral description is the most abstract level. describing the func-
tion of the design in a procedural, algorithmic form similar to a programming language. It does not
provide any detail on how the design is to be implemented with hardware. The algorithmic-based
behavioral description is most appropriate for simulating complex systems in order to venify de-
sign ideas and explore tradeoffs. Descriptions at this level are accessible to nontechnical users
who understand programming languages. Some algorithms, however, might not be synthesizable.

We will now illustrate the RTL and structural descriptions by using the design example of
the previous section. The design example will serve as a model of coding style for future ex-
amples and will exploit alternative syntax options supported by revisions to the Verilog lan-
guage. (An algorithmic-based description is illustrated in Section 8.9.)

RTL Description

The block diagram in Fig. 8.10 describes the design example. An HDL description of the
design example can be written as a single RTL description in a Verilog module or as a top-
level module having instantiations of separate modules for the controller and the datapath. The
former option simply ignores the boundaries between the functional units; the modules in the
latter option establish the boundaries shown in Fig. 8.9(a) and Fig. 8.10. We advocate the sec-
ond option, because. in general, it distinguishes more clearly between the controller and the data-
path. This choice also allows one to easily substitute alternative controllers for a given datapath
(e.g.. replace an RTL model by a structural model). The RTL description of the design exam-
ple is shown in HDL Example 8.2. The description follows the ASMD chart of Fig. 8.9(d),
which contains a complete description of the controller, the datapath, and the interface between
them (i.e., the outputs of the controller and the status signals). Likewise, our description has
three modules: Design_Example_RTL, Controller_RTL, and Dataparh_RTL. The descriptions
of the controller and the datapath units are taken directly from Fig. 8.9(d). Design_Example_RTL
declares the input and output ports of the module and instantiates Controller_RTL and
Datapath_RTL. At this stage of the description, it is important to remember to declare A as a vec-
tor. Failure to do so will produce port mismatch errors when the descriptions are compiled to-
gether. Note that the status signals A{2] and A[3] are passed to the controller. The primary
(external) inputs to the controller are Start, clock (to synchronize the system), and reser_b. The
active-low input signal reser_b is needed to initialize the state of the controller o S_dle. With-
out that signal, the controller could not be placed in a known initial state.

The controller is described by three cyclic (always) behaviors. An edge-sensitive behavior
updates the state at the positive edge of the clock, depending on whether a reset condition is
asserted. Two level-sensitive behaviors describe the combinational logic for the next state and
the outputs of the controller, as specified by the ASMD chart. Notice that the description in-
cludes default assignments to all of the outputs (e.g., ser_E = 0). This approach allows the
code of the case logic to be simplified by expressing only explicit assertions of the variables
(i.e.. values are assigned by exception). The approach also ensures that every path through the
assignment logic assigns a value to every variable. Thus, a synthesis tool will interpret the
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logic to be combinational; failure to assign a value to every variable on every path of logic im-
plies the need for a transparent latch (memory) to implement the logic. Synthesis tools will pro-
vide the latch, wasting silicon area.

The three states of the controller are given symbolic names and are encoded into binary
values. Only three of the possible two-bit patterns are used, so the case statement for the next-
state logic includes a default assignment to handle the possibility that one of the three assigned
codes is not detected, The alternative is to allow the hardware to make an arbitrary assignment
to the next state (next_state = 2'bx;). Also, the first statement of the next-state logic assigns
next_state = §_idle to guarantee that the next state is assigned in every thread of the logic. This
is a precaution against accidentally forgetting to make an assignment to the next state in every
thread of the logic, with the result that the description implies the need for memory, which a
synthesis tool will implement with a transparent latch,

The description of Datapath_RTL is written by testing for an assertion of each control sig-
nal from Controller_RTL. The register transfer operations are displayed in the ASMD chart
(Fig. 8.9(d)). Note that nonblocking assignments are used (with symbol <=) for the register
transfer operations. This ensures that the register operations and state transitions are concur-
rent, a feature that is especially crucial during control state S_/. In this state, A is increment-
ed by 1 and the value of A2 (Af2]) is checked to determine the operation to execute at register
E at the next clock. To accomplish a valid synchronous design, it is necessary to ensure that
A[2] is checked before A is incremented. If blocking assignments were used, one would have
to place the two statements that check E first and the A statement that increments last. How-
ever, by using nonblocking assignments, we accomplish the required synchronization without
being concerned about the order in which the statements are listed. The counter A in
Datapath_RTL is cleared synchronously because c¢lr_A_F is synchronized to the clock.

The cyclic behaviors of the controller and the datapath interact in a chain reaction: At the
active edge of the clock, the state and datapath registers are updated. A change in the state, a
primary input, or a status input causes the level-sensitive behaviors of the controller to update
the value of the next state and the outputs. The updated values are used at the next active edge
of the clock to determine the state transition and the updates of the datapath,

Note that the manual method of design developed (1) a block diagram (Fig. 8.9(a)) show-
ing the interface between the datapath and the controller, (2) an ASMD chart for the system (Fig.
8.9(d)), (3) the logic equations for the inputs to the flip-flops of the controller, and (4) a circuit
that implements the controller (Fig. 8.12). In contrast, an RTL model describes the state tran-
sitions of the controller and the operations of the datapath as a step towards automatically syn-
thesizing the circuit that implements them. The descriptions of the datapath and controller are
derived directly from the ASMD chart in both cases.

HDL Example 8.2

Il RTL description of design example (see Fig. 8.11)
module Design_Example_RTL (A, E, F, Start, clock, reset_b),
/! Specify ports of the top-level module of the design
I/ See block diagram, Fig. 8.10
output [3: 0] A;
output EiE:
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input Start, clock, reset_b;,
/l Instantiate controller and datapath units
Controller_RTL MO (set_E, cIr_E, set_F, clr_A_F, incr_A, A[2], A[3], Start, clock,

reset b );

Datapath_RTL M1 (A, E, F, set_E, cIr_E, set_F, cir_A_F, incr_A, clock);
endmodule
module Controller_RTL (set_E, cIr_E, set_F, cIr_A_F, incr_A, A2, A3, Stan, clock,

reset_b);

output reg set_E, cIr_E, set_F, clr_A_F, incr_A;

input Start, A2, A3, clock, reset_b;

reg [1: 0] state, next_state;

parameter S_idle =2'b00, S_1=2b01, S_2=2'b11; // State codes

always @ (posedge clock or negedge reset_b)  // State transitions (edge sensitive)
if (reset_b == 0) state <= S_|dle;
else state <= next_state;

Il Code next-state logic directly from ASMD chart (Fig. 8.9d)

always @ (state, Start, A2, A3) begin /I Next-state logic (level sensitive)
next_state = S_idle;
case (state)

S_idle: if (Start) next_state = S_1, else next_state = S_idle;
i if (A2 & A3) next_state = S_2; else next_state = S_1;
S_2. next_state = S_idle;
default: next_state = S_idle;
endcase
end

/l Code output logic directly from ASMD chart (Fig. 8.9d)
always @ (state, Start, A2) begin
set E = 0; // default assignments; assign by exception
cr_E
set_F
cir A_F
incr_A
case (state
S_idle: if (Start) cIr_A_F = 1;
-l beginincr_A = 1;if (A2) set_ E=1; elseclr E =1; end
.12 set F=1;
endcase
end
endmodule
module Datapath_RTL (A, E, F, set_E, cIr_E, set_F, clr_A_F, incr_A, clock);
output reg [3: 0] A; Il register for counter
output reg E; F! Il flags
input set_E, clr_E, set_F, cir_A_F, incr_A, clock;
Il Code register transfer operations directly from ASMD chart (Fig. 8.9(d))
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always @ (posedge clock) begin

if (set_E) E<=1;
if (cIr_E) E<=0;
if (set_F) Fe<=1,
if (cIr_A_F) begin A <= 0; F <= 0; end
if (incr_A) A<=A+1;
end
endmodule

Testing the Design Description

The sequence of operations for the design example was investigated in the previous section.
Table 8.3 shows the values of E and F while register A is incremented. It is instructive to de-
vise a test that checks the circuit to verify the validity of the HDL description. The test bench
in HDL Example 8.3 provides such a module. (The procedure for writing test benches is ex-
plained in Section 4.12.) The test module generates signals for Start, clock, and reset_b, and
checks the results obtained from registers A, E, and F. Initially, the reset_b signal is set to 0 to
initialize the controller, and Start and clock are set to 0. Attime t = 5, the reset_b signal is de-
asserted by setting it to 1, the Start input is asserted by setting it to 1, and the clock is then re-
peated for 16 cycles. The $monitor statement displays the values of A, E, and F every 10 ns,
The output of the simulation is listed in the example under the simulation log. Initially, at time
t = 0, the values of the registers are unknown, so they are marked with the symbol x. The first
positive clock transition, at time = 10, clears A and F, but does not affect E, so E is unknown
at this time. The rest of the table is identical to Table 8.3. Note that since Start is still equal to
1 attime = 160, the last entry in the table shows that A and F are cleared to 0, and E does not
change and remains at 1. This occurs during the second transition, from S_idle to S_1.

HDL Example 8.3

I/ Test bench for design example
module t_Design_Example_RTL,

reg Start, clock, reset_b;
wire [3: 0] A;
wire E, F;

/l Instantiate design example
Design_Example_RTL MO (A, E, F, Start, clock, reset_b),
I/ Describe stimulus waveforms

initial #500 $finish; /I Stopwatch
initial
begin
reset_ b=0;
Start = 0;
clock = 0;

#5reset_ b =1; Start =1,
repeat (32)
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begin
#5 clock = ~ clock; // Clock generator
end
end
initial
$monitor ("A = %b E = %b F = %b time = %0d", A, E, F, $time);
endmodule
Simulation log:
A=xxxx E=xF=xtime=0
A=0000E=xF=0tme=10
A=0001E=0F=0tme=20
A=0010E=0F =0time =30
A=0011E=0F =0time =40
A=0100E=0F=0time =50
A=0101E=1F=0time=60
A=0110E=1F=0time=70
A=0111E=1F=0tme =80
A=1000E=1F=0time =90
A=1001 E=0F =0time = 100
A=1010E=0F=0time=110
A=1011E=0F =0time =120
A=1100E=0F=0time =130
A=1101E=1F=0time =140
A=1101E=1F=1time=150
A =0000E=1F=0time =160

Waveforms produced by a simulation of Design_Example_RTL with the test bench are shown
in Fig. 8.13. Numerical values are shown in hexadecimal format. The results are annotated to call
attention to the relationship between a control signal and the operation that it causes to execute.
For example, the controller asserts set_E for one clock cycle before the clock edge at which E is
setto |. Likewise, ser_F asserts during the clock cycle before the edge at which F is set to 1. Also,
elr_A_F is formed in the cycle before A and F are cleared. A more thorough verification of
Design_Example_RTL would confirm that the machine recovers from a reset on the fly (i.e., a reset
that is asserted randomly after the machine is operating). Note that the signals in the output of the
simulation have been listed in groups showing (1) clock and reser_b, (2) Starr and the status
inputs, (3) the state, (4) the control signals, and (5) the datapath registers. It is strongly recom-
mended that the state always be displayed, because this information is essential for verifying that
the machine is operating correctly and for debugging its description when it is not. For the chosen
binary state code, S idle = 00, = 0g, S 1 = 01, = lg,and S 2 = 11, = 3.

Structural Description

The RTL description of a design consists of procedural statements that determine the func-
tional behavior of the digital circuit. This type of description can be compiled by HDL synthesis
tools, from which it is possible to obtain the equivalent gate-level circuit of the design. It is also
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FIGURE 8.13
Simulation results for design example

possible to describe the design by its structure rather than its function. A structural description
of a design consists of instantiations of components that define the circuit elements and their
interconnections. In this regard, a structural description is equivalent to a schematic diagram
or a block diagram of the circuit. Contemporary design practice relies heavily on RTL de-
scriptions, but we will present a structural description here to contrast the two approaches.

For convenience, the circuit is again decomposed into two parts: the controller and the data-
path. The block diagram of Fig. 8.10 shows the high-level partition between these units, and
Fig. 8.12 provides additional underlying structural details of the controller. The structure of the
datapath is evident in Fig. 8.10 and consists of the flip-flops and the four-bit counter with syn-
chronous clear. The top level of the Verilog description replaces Design_Example_RTL, Cont-
roller_RTL, and Darapath_RTL by Design_Example_STR, Controller_STR, and Datapath_STR,
respectively. The descriptions of Controller_STR and Datapath_STR will be structural.

HDL Example 8.4 presents the structural description of the design example. It consists of a
nested hierarchy of modules and gates describing (1) the top-level module, Design_Example_STR,
(2) the modules describing the controller and the datapath, (3) the modules describing the flip-
flops and counters, and (4) gates implementing the logic of the controller. For simplicity, the
counter and flip-flops are described by RTL models.

The top-level module (see Fig. 8.10) encapsulates the entire design by (1) instantiating the
controller and the datapath modules, (2) declaring the primary (external) input signals, (3) de-
claring the output signals, (4) declaring the control signals generated by the controller and con-
nected to the datapath unit, and (5) declaring the status signals generated by the datapath unit
and connected to the controller. The port list is identical to the list used in the RTL description.
The outputs are declared as wire type here because they serve merely to connect the outputs
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of the datapath module to the outputs of the top-level module, with their logic value being de-
termined within the datapath module.

The control module describes the circuit of Fig. 8.12. The outputs of the two flip-flops G/
and GO are declared as wire data type. G/ and GO cannot be declared as reg data tvpe because
they are outputs of an instantiated D flip-flop. DG and DGO are undeclared identifiers. i.e.
implicit wires. The name of a variable is local to the module or procedural block in which it is
declared. Nets may not be declared within a procedural block (e.g., begin ... end). The rule
to remember is that a variable must be a declared register type (e.g.. reg) if and only if its value
is assigned by a procedural statement (i.e., a blocking or nonblocking assignment statement with-
in a procedural block in cyclic or single-pass behavior or in the output of a sequential UDP).
The instantiated gates specify the combinational part of the circuit. There are two flip-flop
input equations and three output equations. The outputs of the flip-flops G/ and G0 and the input
equations DG/ and DGO replace output @ and input D in the instantiated flip-flops. The D
flip-flop is then described in the next module. The structure of the datapath unit has direct in-
puts to the JK flip-flops. Note the correspondence between the modules of the HDL descrip-
tion and the structures in Figs. 8.9, 8.10, and 8.12.

HDL Example 8.4

// Structural description of design example (Figs. 8.9(a), 8.12)
module Design_Example_STR

( output [3:0] A, /f'V 2001 port syntax
output E.F,

input Start, clock, reset_b
b

Controller_STR MO (clr_A_F, set_E, cIr_E, set_F, incr_A, Start, A[2]. A[3]. clock.
reset_b ),
Datapath_STR M1 (A, E, F, clr_A_F, set_E, clr_E, set_F, incr_A. clock);
endmodule

module Controller STR

(outputclr_A_F, set_E, clr_E, set_F, incr_A,
input Start, A2, A3, clock, reset_b

)

wire GO, G1,
parameter S_idle =2'b00, S_1=2'b01, S_2 =2'b11;
wire w1, w2, w3,

not (GO_b, GO);
not (G1_b, G1);
buf (incr_A, w2);
buf (set_F, G1);
not (A2_b, A2),
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or (D_GO, w1, w2);

and (w1, Start, GO_b),

and (cir_A_F, GO_b, Start);

and (w2, GO, G1_b);

and (set_E, w2, A2),

and (clr_E, w2, A2_b);

and (D_G1, w3, w2);

and (w3, A2, A3);

D_flip_flop_AR MO (G0, D_G0, clock, reset_b);

D_fiip_flop_AR M1 (G1, D_G1, clock, reset_b);
endmodule

/I datapath unit

module Datapath_STR

( output [3: 0] A,

output E, F,

input clr_A_F, set_E, clr_E, set_F, incr_A, clock

)
JK_flip_flop_2 MO (E, E_b, set_E, cIr_E, clock);
JK_flip_flop_2 M1 (F, F_b, set_F, cIr_A_F, clock);
Counter 4 M2 (A, incr_A, clr_A_F, clock);

endmodule

/I Counter with synchronous clear

module Counter_4 (output reg [3: 0] A, input incr, clear, clock);

always @ (posedge clock)
if (clear) A<=0;elseif(incr)A<=A+1,
endmodule

module D_flip_flop_AR (Q, D, CLK, RST);

output Q
input D, CLK, RST;
reg Q;

always @ (posedge CLK, negedge RST)
if (RST ==0) Q <= 1'b0;
else Q <=D;
endmodule

I/ Description of JK flip-flop

module JK_flip_flop_2 (Q, Q_not, J, K, CLK);
output Q, Q_not;

369
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input J, K, CLK;
reg Q;
assign Q_not = ~Q;
always @ (posedge CLK)
case ({J, K})
2'b00: Q<=Q;
2'b01: Q <= 1'b0;
2'b10: Q<= 1b1;
2'b11: Q <=~Q;
endcase
endmodule

module t_Design_Example_STR;
reg Start, clock, reset_b;
wire [3: 0] A;
wire E,F;

// Instantiate design example
Design_Example_STR MO (A, E, F, Start, clock, reset_b);
I/ Describe stimulus waveforms

initial #500 $finish; I/ Stopwatch
initial
begin
reset_b =0,
Start = 0;
clock = 0;
#5 reset_b=1; Start =1,
repeat (32)
begin
#5 clock = ~ clock; I Clock generator
end
end
initial
$monitor ("A = %b E = %b F = %b time = %0d", A, E, F, $time);
endmodule

The structural description was tested with the test bench that verified the RTL description
to produce the results shown in Fig. 8.13. The only change necessary is the replacement of the
instantiation of the example from Design_Example_RTL to Design_Example_STR. The sim-
ulation results for Design_Example_STR matched those for Design_Example_RTL. However,
a comparison of the two descriptions indicates that the RTL style is easier to write and will lead
to results faster if synthesis tools are available to automatically synthesize the registers, the
combinational logic, and their interconnections.
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8.7 SEQUENTIAL BINARY MULTIPLIER

This section introduces a second design example. It presents a hardware algorithm for binary
multiplication, proposes the register configuration for its implementation, and then shows how
to use an ASMD chart to design datapath and its controller.

The system we will examine multiplies two unsigned binary numbers. The hardware algorithm
that was developed in Section 4.7 to execute multiplication resulted in a combinational circuit mul-
tiplier with many adders and AND gates, requiring a large area of silicon for the implementation
of the algorithm as an integrated circuit. In contrast, in this section, a more efficient hardware
algorithm results in a sequential multiplier that uses only one adder and a shift register. The sav-
ings in hardware and silicon area come about from a trade-off in the space (hardware)-time
domain. A parallel adder uses more hardware, but forms its result in one cycle of the clock; a
sequential adder uses less hardware, but takes multiple clock cycles to form its result.

The multiplication of two binary numbers is done with paper and pencil by successive (i.e.,
sequential) additions and shifting, The process is best illustrated with a numerical example, Let
us multiply the two binary numbers 10111 and 10011:

23 10111 multiplicand
19 10011  multiplier
10111
10111
00000
00000
10111
437 110110101 product

The process consists of successively adding and shifting copies of the multiplicand. Succes-
sive bits of the multiplier are examined, least significant bit first. If the multiplier bit is 1, the
multiplicand is copied down; otherwise, 0's are copied down. The numbers copied in succes-
sive lines are shifted one position to the left from the previous number. Finally, the numbers
are added and their sum forms the product. The product obtained from the multiplication of two
binary numbers of n bits each can have up to 2n bits. It is apparent that the operations of
addition and shifting are executed by the algorithm.

When the multiplication process is implemented with digital hardware, it is convenient to
change the process slightly. First, we note that, in the context of synthesizing a sequential ma-
chine, the add-and-shift algorithm for binary multiplication can be executed in a single clock cycle
or over multiple clock cycles. On the one hand, a choice to form the product in the time span of a
single clock cycle will synthesize the circuit of a parallel multiplier like the one discussed in Section
4.7. On the other hand, an RTL model of the algorithm adds shifted copies of the multiplicand to
an accumulated partial product. The values of the multiplier. multiplicand, and partial product are
stored in registers, and the operations of shifting and adding their contents are executed under the
control of a state machine. Among the many possibilities for distributing the effort of multiplica-
tion over multiple clock cycles, we will consider that in which only one partial product is formed
and accumulated in a single cycle of the clock. (One alternative would be to use additional hardware
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to form and accumulate two partial products in a clock cycle, but this would require more logic
gates and either faster circuits or a slower clock.) Instead of providing digital circuits to store and
add simultaneously as many binary numbers as there are 1's in the multiplier. it is less expensive
to provide only the hardware needed to sum two binary numbers and accumulate the partial prod-
ucts in a register. Second, instead of shifting the multiplicand to the left, the partial product being
formed is shifted to the right. This leaves the partial product and the multiplicand in the required
relative positions, Third, when the corresponding bit of the multiplier is 0, there is no need to add
all 0's to the partial product, since doing so will not alter its resulting value.

Register Configuration

A block diagram for the sequential binary multiplier is shown in Fig. 8.14(a), and the register
configuration of the datapath is shown in Fig. 8.14(b). The multiplicand is stored in register B,

Ready Multiplicand  Multiplier

Load_regs
Shift_regs
Add_regs
Decr_P

| Product

(a)

Register P (Counter)

i

olo|ofofolo]o]ofo ff‘élht}’iij
9 // LA SN s Ve R L1
C Register A (Sum) Register Q (Multiplier)
Iy
(b)
FIGURE 8.14

(a) Block diagram and (b) datapath of a binary multiplier
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the multiplier is stored in register @, and the partial product is formed in register A and stored
in A and Q. A parallel adder adds the contents of register B to register A. The C flip-flop stores
the carry after the addition. The counter P is initially set to hold a binary number equal to the
number of bits in the multiplier. This counter is decremented after the formation of each par-
tial product. When the content of the counter reaches zero, the product is formed in the dou-
ble register A and Q, and the process stops. The control logic stays in an initial state until Star
becomes 1. The system then performs the multiplication. The sum of A and B forms the n most
significant bits of the partial product, which is transferred to A. The output carry from the ad-
dition, whether 0 or 1, is transferred to C. Both the partial product in A and the multiplier in
Q are shifted to the right. The least significant bit of A is shifted into the most significant po-
sition of @, the carry from C is shifted into the most significant position of A, and 0 is shift-
ed into C. After the shift-right operation, one bit of the partial product is transferred into Q
while the multiplier bits in Q are shifted one position to the right. In this manner, the least
significant bit of register Q, designated by Qf0], holds the bit of the multiplier that must be
inspected next. The control logic determines whether to add or not on the basis of this input
bit. The control logic also receives a signal, Zero, from a circuit that checks counter P for zero.
Q[0] and Zero are status inputs for the control unit. The input signal Start is an external con-
trol input. The outputs of the control logic launch the required operations in the registers of
the datapath unit.

The interface between the controller and the datapath consists of the status signals and the
output signals of the controller. The control signals govern the synchronous register operations
of the datapath. Signal Load_regs loads the internal registers of the datapath, Shift_regs causes
the shift register to shift, Add_regs forms the sum of the multiplicand and register A, and
Decr_P decrements the counter. The controller also forms output Ready to signal to the host
environment that the machine is ready to multiply. The contents of the register holding the
product vary during execution, so it is useful to have a signal indicating that its contents are
valid. Note, again, that the state of the control is not an interface signal between the control unit
and the datapath. Only the signals needed to control the datapath are included in the interface.
Putting the state in the interface would require a decoder in the datapath, and require a wider
and more active bus than the control signals alone. Not good.

ASMD Chart

The ASMD chart for the binary multiplier is shown in Fig. 8.15. The intermediate form in
Fig. 8.15(a) annotates the ASM chart of the controller with the register operations, and the
completed chart in Fig. 8.15(b) identifies the Moore and Mealy outputs of the controller,
Initially, the multiplicand is in B and the multiplier in Q. As long as the circuit is in the ini-
tial state and Start = 0, no action occurs and the system remains in state S_idle with Ready
asserted. The multiplication process is launched when Srarr = 1. Then, (1) control goes to
state S_add, (2) register A and carry flip-flop C are cleared to 0, (3) registers B and Q are
loaded with the multiplicand and the multiplier, respectively, and (4) the sequence counter
P is set to a binary number n, equal to the number of bits in the multiplier. In state §_add,
the multiplier bit in Q[0] is checked, and if it is equal to 1, the multiplicand in B is added to
the partial product in A. The carry from the addition is transferred to C. The partial product
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FIGURE 8.15
ASMD chart for binary multiplier

in A and C is left unchanged if Q/0] = 0. The counter P is decremented by 1 regardless of
the value of Q/0], so Decr_P is formed in state S_add as a Moore output of the controller.
In both cases, the next state is S_shift. Registers C, A, and Q are combined into one composite
register CAQ, denoted by the concatenation {C, A, 0}, and its contents are shifted once to
the right to obtain a new partial product. This shift operation is symbolized in the flowchart
with the Verilog logical right-shift operator, >>. It is equivalent to the following statement
in register transfer notation:

Shift right CAQ, C <0
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In terms of individual register symbols, the shift operation can be described by the following
register operations:

A—shrA, A, <C
Q«—shrQ, 0, < 4y
C<0

Both registers A and Q are shifted right. The leftmost bit of A, designated by A, —, receives
the carry from C. The leftmost bit of Q, or Q,—, receives the bit from the rightmost position
of A in Ay, and C is reset to 0. In essence, this is a long shift of the composite register CAQ
with 0 inserted into the serial input, which is at C,

The value in counter P is checked after the formation of each partial product. If the contents
of P are different from zero, status bit Zero is set equal to 0 and the process is repeated to form
a new partial product. The process stops when the counter reaches 0 and the controller’s status
input Zero is equal to 1. Note that the partial product formed in A is shifted into Q one bit at a
time and eventually replaces the multiplier. The final product is available in A and O, with A
holding the most significant bits and Q the least significant bits of the product.

The previous numerical example is repeated in Table 8.5 to clarify the multiplication process.
The procedure follows the steps outlined in the ASMD chart. The data shown in the table can
be compared with simulation results,

The type of registers needed for the data processor subsystem can be derived from the
register operations listed in the ASMD chart. Register A is a shift register with parallel load to
accept the sum from the adder and must have a synchronous clear capability to reset the reg-
ister to 0. Register Q is a shift register. The counter P is a binary down counter with a facility

Table 8.5
Numerical Example For Binary Multiplier

Multiplicand B = 10111, = 17y = 23;, Multiplier @ = 10011, = 13,4 = 199

C A Q P
Multiplier in O 0 00000 10011 101
Oy = l;add B 10111
First partial product 0 10111 100
Shift right CAQ 0 01011 11001

Qp = l;add B 10111

Second partial product 1 00010 011
Shift right CAQ 0 10001 01100

Qp = 0; shift right CAQ 0 01000 10110 010
Qu = 0 shift right CAQ 0 00100 01011 001
Qy= l;add B 10111

Fifth partial product 0 11011

Shift right CAQ 0 01101 10101 000

Final product in AQ = 01101101015 = 1bSy
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to parallel load a binary constant. The C flip-flop must be designed to accept the input carry
and have a synchronous clear. Registers B and Q need a parallel load capability in order to re-
ceive the multiplicand and multiplier prior to the start of the multiplication process.

8.8 CONTROL LOGIC

The design of a digital system can be divided into two parts: the design of the register trans-
fers in the datapath unit and the design of the control logic of the control unit. The control

logic is a finite state machine; its Mealy- and Moore-type outputs control the operations of the
datapath. The inputs 1o the control unit are the primary (external) inputs and the internal sta-
tus signals fed back from the datapath to the controller. The design of the system can be syn-
thesized from an RTL description derived from the ASMD chart. Alternatively, a manual design
must derive the logic governing the inputs to the flip-flops holding the state of the controller.
The information needed to form the state diagram of the controller is already contained in the
ASMD chart, since the rectangular blocks that designate state boxes are the states of the sequen-
tial circuit, The diamond-shaped blocks that designate decision boxes determine the logical con-
ditions for the next state transition in the state diagram.

As an example, the control state diagram for the binary multiplier developed in the previ-
ous section is shown in Fig. 8.16(a). The information for the diagram is taken directly from the

Zero =1

Start =0

Zero =0
(a)
State Transition Register Operations
From To
S_idle Initial state
S_idle S_add A<=0,C<=0,P<=dp_width
S_add S_shift P<=P-1
if (Q[0/)then (A <=A + B, C <= C)
S_shift shift right [CAQ),C<=0
(b)
FIGURE 8.16

Control specifications for binary multiplier
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ASMD chart of Fig. 8.15. The three states S_idle through S_shift are taken from the rectangu-
lar state boxes. The inputs Start and Zero are taken from the diamond-shaped decision boxes.
The register transfer operations for each of the three states are listed in Fig. 8.16(b) and are taken
from the corresponding state and conditional boxes in the ASMD chart. Establishing the state
transitions is the initial focus, so the outputs of the controller are not shown.

There are two distinct aspects with which we have to deal when implementing the control
logic: Establish the required sequence of states and provide signals to control the register op-
erations. The sequence of states is specified in the ASMD chart or the state diagram. The sig-
nals for controlling the operations in the registers are specified in the register transfer statements
annotated on the ASMD chart or listed in tabular format. For the multiplier, these signals are
Load_regs (for parallel loading the registers in the datapath unit), Decr_P (for decrementing
the counter), Add_regs (for adding the multiplicand and the partial product), and Shift_regs
(for shifting register CAQ). The block diagram of the control unit is shown in Fig. 8.14(b).
The inputs to the controller are Start, Q[0], and Zero, and the outputs are Ready, Load_regs,
Decr_P, Add_regs, and Shift_regs, as specified in the ASMD chart. We note that Qf0] affects
only the output of the controller, not its state transitions, The machine transitions from S_add
to S_shift unconditionally.

An important step in the design is the assignment of coded binary values to the states. The sim-
plest assignment is the sequence of binary numbers, as shown in Table 8.6. A similar assignment
is the Gray code, according to which only one bit changes when going from one number to the
next. A state assignment often used in control design is the one-hot assignment. This assignment
uses as many bits as there are states in the circuit. At any given time, only one bit is equal to 1
(the one that is hot) while all others are kept at 0 (all cold). This type of assignment uses a flip-
flop for each state. Indeed, one-hot encoding uses more flip-flops than other types of coding, but
it usually leads to simpler decoding logic for the next state and the output of the machine. Because
the decoding logic does not become more complex as states are added to the machine, the speed
at which the machine can operate is not limited by the time required to decode the state.

Since the controller is a sequential circuit, it can be designed manually by the sequential logic
procedure outlined in Chapter 5. However, in most cases this method is difficult to carry out
manually because of the large number of states and inputs that a typical control circuit may have.
As a consequence, it is necessary to use specialized methods for control logic design that may
be considered as variations of the classical sequential logic method. We will now present two
such design procedures. One uses a sequence register and decoder, and the other uses one flip-
flop per state. The method will be presented for a small circuit, but it applies to larger circuits
as well. Of course, the need for these methods is eliminated if one has software that automat-
ically synthesizes the circuit from an HDL description.

Table 8.6
State Assignment for Control

State Binary Gray Code One-Hot

S_idle 00 00 001
S_add 01 01 010
S_shift 10 11 100
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Sequence Register and Decoder

The sequence-register-and-decoder (manual) method, as the name implies, uses a register for
the control states and a decoder to provide an output corresponding to each of the states. (The
decoder is not needed if a one-hot code is used.) A register with n flip-flops can have up to 2”
states, and an n-10-2"-line decoder has up to 2" outputs. An n-bit sequence register is essentially
a circuit with n flip-flops, together with the associated gates that effect their state transitions.

The ASMD chart and the state diagram for the controller of the binary multiplier have three
states and two inputs. (There is no need to consider 0/0].) To implement the design with a se-
quence register and decoder, we need two flip-flops for the register and a two-to-four-line de-
coder. The outputs of the decoder will form the Moore-type outputs of the controller directly.
The Mealy-type outputs will be formed from the Moore outputs and the inputs.

The state table for the finite state machine of the controller is shown in Table 8.7. It is de-
rived directly from the ASMD chart of Fig. 8.15(b) or the state diagram of Fig. 8.16(a). We des-
ignate the two flip-flops as G| and Gy and assign the binary states 00, 01, and 10 to S_idle,
S_add, and S_shift, respectively. Note that the input columns have don’t-care entries whenev-
er the input variable is not used to determine the next state. The outputs of the control circuit
are designated by the names given in the ASMD chart, The particular Moore-type output vari-
able that is equal to 1 at any given time is determined from the equivalent binary value of the
present state. Those output variables are shaded in Table 8.7. Thus, when the present state is
GGy = 00, output Ready must be equal to 1, while the other outputs remain at 0. Since the
Moore-type outputs are a function of only the present state, they can be generated with a de-
coder circuit having the two inputs G, and Gy and using three of the decoder outputs T, through
T3, as shown in Fig. 8.17(a), which does not include the wiring for the state feedback.

The state machine of the controller can be designed from the state table by means of the clas-
sical procedure presented in Chapter 5. This example has a small number of states and inputs,
so we could use maps to simplify the Boolean functions. In most control logic applications, the

Table 8.7
State Table for Control Circuit
Present Next
State Inputs State
. BB
Present-State § g § §
Symbol Gy Gy Start Q0] Zero G, G
S_idle 0 0 0 X X 0O 0 M o o 0 o
S_idle 0 0 1 X X 0o 1 @ 1 0 0 0
S_add 0 1 X 0 X 1 0 0 o0 Mm 0 o
S_add 0 1 X 1 X 1 0 O 0 1 1 0
S_shift 1 0 X X 0 0 1 0o 0 0o 0 i
S_shift 1 0 X X 1 0O 0 0 0 0 0 1
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FIGURE 8.17
Logic diagram of control for binary multiplier using a sequence register and decoder
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number of states and inputs is much larger. In general, the application of the classical method
requires an excessive amount of work to obtain the simplified input equations for the flip-flops
and is prone to error. The design can be simplified if we take into consideration the fact that

the decoder outputs are available for use in the design. Instead of using flip-flop outputs as the
present-state conditions, we use the outputs of the decoder 1o indicate the preseni-state condi-
tion of the sequential circuit. Moreover, instead of using maps to simplify the flip-flop equa-
tions, we can obtain them directly by inspection of the state table. For example, from the
next-state conditions in the state table, we find that the next state of G, is equal to 1 when the
present state is S_add and is equal to 0 when the present state is S_idle or S_shifr. These con-

ditions can be specified by the equation

Dgy =T,
where Dg, is the D input of flip-flop G,. Similarly, the D input of Gy is
Dgo = Ty Start + T, Zero'

When deriving input equations by inspection from the state table, we cannot be sure that the
Boolean functions have been simplified in the best possible way. (Synthesis tools take care of
this detail automatically.) In general, it is advisable to analyze the circuit to ensure that the
equations derived do indeed produce the required state transitions.

The logic diagram of the control circuit is drawn in Fig. 8.17(b). It consists of a register with
two flip-flops G, and G and a 2 X 4 decoder. The outputs of the decoder are used to gener-
ate the inputs to the next-state logic as well as the control outputs. The outputs of the controller
should be connected to the datapath to activate the required register operations.

One-Hot Design (One Flip-Flop per State)

Another method of control logic design is the one-hot assignment, which results in a sequen-
tial circuit with one flip-flop per state. Only one of the flip-flops contains a 1 at any time; all
others are reset to 0. The single 1 propagates from one flip-flop to another under the control of
decision logic. In such a configuration, each flip-flop represents a state that is present only
when the control bit is transferred to it.

This method uses the maximum number of flip-flops for the sequential circuit. For exam-
ple, a sequential circuit with 12 states requires a minimum of four flip-flops. By contrast, with
the method of one flip-flop per state, the circuit requires 12 flip-flops, one for each state. At
first glance, it may seem that this method would increase system cost, since more flip-flops are
used. But the method offers some advantages that may not be apparent. One advantage is the
simplicity with which the logic can be designed by inspection of the ASMD chart or the state
diagram. No state or excitation tables are needed if D-type flip-flops are employed. The one-
hot method offers a savings in design effort, an increase in operational simplicity, and a pos-
sible decrease in the total number of gates, since a decoder is not needed.

The design procedure will be demonstrated by obtaining the control circuit specified by the state
diagram of Fig. 8.16(a). Since there are three states in the state diagram, we choose three D flip-
flops and label their outputs Gy, Gy, and G, corresponding to S_idle, S_add, and S_shift, respec-
tively. The input equations for setting each flip-flop to | are determined from the present state and
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the input conditions along the corresponding directed lines going into the state. For example, Dgq,
the input to flip-flop Gy, is set to 1 if the machine is in state G, and Stzart is not asserted, or if the
machine is in state G, and Zero is asserted. These conditions are specified by the input equation:

Dgy = Gy Start’ + Gy Zero

In fact, the condition for setting a flip-flop to 1 is obtained directly from the state diagram,
from the condition specified in the directed lines going into the corresponding flip-flop state
ANDed with the previous flip-flop state. If there is more than one directed line going into a state,
all conditions must be ORed. Using this procedure for the other three flip-flops, we obtain the
remaining input equations:

Dgy = Gy Start + Gy Zero'
Dgy = Gy

The logic diagram of the one-hot controller (with one flip-flop per state) is shown in Fig. 8.18.
The circuit consists of three D flip-flops labeled Gy through G, together with the associated gates

Ready
Start o\ Load_regs
o
oo ——
B Add_regs
Zero ————+4
L Decr_P
Shift_regs
clock it HE ;
reset_b ?
FIGURE 8.18

Logic diagram for one-hot state controller
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specified by the input equations. Initially, flip-flop G must be set to 1 and all other flip-flops
must be reset to 0, so that the flip-flop representing the initial state is enabled. This can be done
by using an asynchronous preset on flip-flop Gy and an asynchronous clear for the other flip-
flops. Once started, the controller with one flip-flop per state will propagate from one state to
the other in the proper manner. Only one flip-flop will be set to 1 with each clock edge; all
others are reset to 0, because their D inputs are equal to 0.

8.9 HDL DESCRIPTION OF BINARY MULTIPLIER

A second example of an HDL description of an RTL design is given in HDL Example 8.5. The
example is of the binary multiplier designed in Section 8.7. For simplicity, the entire descrip-
tion is “flattened” and encapsulated in one module. Comments will identify the controller and
the datapath. The first part of the description declares all of the inputs and outputs as specified
in the block diagram of Fig. 8.14(a). The machine will be parameterized for a five-bit datapath
to enable a comparison between its simulation data and the result of the multiplication with the
numerical example listed in Table 8.5. The same model can be used for a datapath having a
different size merely by changing the value of the parameters. The second part of the descrip-
tion declares all registers in the controller and the datapath, as well as the one-hot encoding of
the states. The third part specifies implicit combinational logic (continuous assignment state-
ments) for the concatenated register CAQ, the Zero status signal, and the Ready output signal.
The continuous assignments for Zero and Ready are accomplished by assigning a Boolean ex-
pression to their wire declarations. The next section describes the control unit, using a single
edge-sensitive cyclic behavior to describe the state transitions, and a level-sensitive cyclic be-
havior to describe the combinational logic for the next state and the outputs. Again, note that
default assignments are made to next_state, Load_regs, Decr_P, Add_regs, and Shift_regs.
The subsequent logic of the case statement assigns their value by exception. The state transi-
tions and the output logic are written directly from the ASMD chart of Fig. 8.15(b).

The datapath unit describes the register operations within a separate edge-sensitive cyclic
behavior. (For clarity, separate cyclic behaviors are used: we do not mix the description of the
datapath with the description of the controller.) Each control input is decoded and is used to
specify the associated operations. The addition and subtraction operations will be implement-
ed in hardware by combinational logic. Signal Load_regs causes the counter and the other reg-
isters to be loaded with their initial values, etc. Because the controller and datapath have been
partitioned into separate units, the control signals completely specify the behavior of the data-
path; explicit information about the state of the controller is not needed and is not made avail-
able to the datapath unit.

The next-state logic of the controller includes a default case item to direct a synthesis tool
to map any of the unused codes to S_idle. The default case item and the default assignments
preceding the case statement ensure that the machine will recover if it somehow enters an un-
used state. They also prevent unintentional synthesis of latches. (Remember, a synthesis tool
will synthesize latches when what was intended to be combinational logic in fact fails to com-
pletely specify the input—output function of the logic.)
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HDL Example 8.5

module Sequential_Binary_Muitiplier (Product, Ready, Multiplicand, Multiplier, Start,
clock, reset_b);

/I Default configuration: five-bit datapath

parameter dp_width = 5, /I Set to width of datapath

output [2*dp_width -1: 0] Product;

output Ready;

input [dp_width -1: 0] Multiplicand, Multiplier;

input Start, clock, reset_b;

parameter BC_size = 3; /I Size of bit counter

parameter S_idle= 3'b001, // one-hot code
S_add = 3'b010,
S_shift= 3'D100;

reg [2:0] state, next_state;

reg [dp_width-1:0] A, B, Q; /I Sized for datapath

reg C;

reg [BC_size-1:0] P;

reg Load_regs, Decr_P, Add_regs, Shift_regs;

/I Miscellaneous combinational logic

assign Product = {A, Q};
wire Zero = (P == 0); I counter is zero
Il Zero = ~|P; /I alternative
wire Ready = (state == S_idle); // controller status
/I control unit

always @ (posedge clock, negedge reset_b)
if (~reset_b) state <= S_idle; else state <= next_state;

always @ (state, Start, Q[0], Zero) begin

next_state = S_idle;

Load_regs = 0;

Decr P=0;

Add_regs = 0;

Shift_regs = 0;

case (state)
S_idle: begin if (Start) next_state = S_add; Load_regs = 1; end
S_add: begin next_state = S_shift; Decr_P = 1; if (Q[0]) Add_regs = 1; end
S_shift: begin Shift_regs = 1, if (Zero) next_state = S_idle;

else next_state = S_add; end

default: next_state = S_idle;
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endcase
end
/I datapath unit
always @ (posedge clock) begin
if (Load_regs) begin
P <= dp_width;
A<=0;
C<=0,

B <= Multiplicand:

Q == Multiplier:
end
if (Add_regs) {C, A} <= A+ B;
if (Shift_regs) {C, A, Q} <= {C, A, Q} >> 1;

if (Decr P)P<=P-1;

end
endmodule

Testing the Multiplier

HDL Example 8.6 shows a test bench for testing the multiplier. The inputs and outputs are
the same as those shown in the block diagram of Fig. 8.14(a). It is naive to conclude that
an HDL description of a system is correct on the basis of the output it generates under the
application of a few input signals. A more strategic approach to testing and verification
exploits the partition of the design into its datapath and control unit. This partition supports
separate verification of the controller and the datapath. A separate test bench can be devel-
oped to verify that the datapath executes each operation and generates status signals cor-
rectly. After the datapath unit is verified, the next step is to verify that each control signal
is formed correctly by the control unit. A separate test bench can verify that the control unit
exhibits the complete functionality specified by the ASMD chart (i.e., that it makes the cor-
rect state transitions and asserts its outputs in response to the external inputs and the status
signals).

A verified control unit and a verified datapath unit together do not guarantee that the sys-
tem will operate correctly. The final step in the design process is to integrate the verified mod-
els within a parent module and verify the functionality of the overall machine. The interface
between the controller and the datapath must be examined in order to verify that the ports
are connected correctly. For example, a mismatch in the listed order of signals may not be
detected by the compiler. After the datapath unit and the control unit have been verified, a
third test bench should verify the specified functionality of the complete system. In practice,
this requires writing a comprehensive test plan identifying that functionality. For example,
the test plan would identify the need to verify that the sequential multiplier asserts the sig-
nal Ready in state S_idle. The exercise to write a test plan is not academic: The quality and
scope of the test plan determine the worth of the verification effort. The test plan guides the
development of the test bench and increases the likelihood that the final design will match
its specification.
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Testing and verifying an HDL model usually requires access to more information than the
inputs and outputs of the machine. Knowledge of the state of the control unit, the control sig-
nals, the status signals, and the internal registers of the datapath might all be necessary for
debugging. Fortunately, Verilog provides a mechanism to hierarchically de-reference identifiers
so that any variable at any level of the design hierarchy can be visible to the test bench.
Procedural statements can display the information required to support efforts to debug the
machine. Simulators use this mechanism to display waveforms of any variable in the design
hierarchy. To use the mechanism, we reference the variable by its hierarchical path name. For
example, the register P within the datapath unit is not an output port of the multiplier, but it can
be referenced as MO.P. The hierarchical path name consists of the sequence of module identi-
fiers or block names, separated by periods and specifying the location of the variable in the
design hierarchy. We also note that simulators commonly have a graphical user interface that
displays all levels of the hierarchy of a design.

The first test bench in HDL Example 8.6 uses the system task $strobe 1o display the re-
sult of the computations, This task is similar to the $display and $monitor tasks explained
in Section 4.12. The $strobe system task provides a synchronization mechanism to ensure
that data are displayed only after all assignments in a given time step are executed. This
is very useful in synchronous sequential circuits, where the time step begins at a clock
edge and multiple assignments may occur at the same time step of simulation. When the
system is synchronized to the positive edge of the clock, using $strobe after the always
@ (posedge clock) statement ensures that the display shows values of the signal after the
clock pulse.

The test bench module t_Sequential_Binary_Multiplier in HDL Example 8.6 instantiates
the module Sequential Binary_Multiplier of HDL Example 8.5. Both modules must be included
as source files when simulating the multiplier with a Verilog HDL simulator. The result of this
simulation displays a simulation log with numbers identical to the ones in Table 8.5. The code
includes a second test bench to exhaustively multiply five-bit values of the multiplicand and
the multiplier. Waveforms for a sample of simulation results are shown in Fig. 8.19, The nu-
merical values of Multiplicand, Multiplier, and Product are displayed in decimal and hexa-
decimal formats. Insight can be gained by studying the displayed waveforms of the control
state, the control signals, the status signals, and the register operations. Enhancements to the
multiplier and its test bench are considered in the problems at the end of this chapter. In this
example, 19}y X 23;5 = 437, and 17y + Oby = 02y with C = 1. Note the need for the
carry bit.

HDL Example 8.6

Il Test bench for the binary multiplier
module t_Sequential_Binary_Multiplier;

parameter dp_width = 5; /! Set to width of datapath
wire [2*dp_width -1: 0]  Product; /I Output from multiplier
wire Ready;

reg [dp_width -1: 0] Multiplicand, Multiplier; // Inputs to multiplier

reg Start, clock, reset_b;
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Simulation waveforms for one-hot state controller
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Il Instantiate multiplier
Sequential_Binary_Multiplier MO (Product, Ready, Multiplicand, Multiplier, Start, clock,
reset_b),
Il Generate stimulus waveforms
initial #200 $finish;
initial
begin
Start = 0;
reset_b=0;
#2 Start = 1; reset_b=1;
Multiplicand = §'b10111;  Multiplier = 5'b10011;
#10 Start = 0;
end
initial
begin
clock = 0;
repeat (26) #5 clock = ~clock;
end
/! Display results and compare with Table 8.5
always @ (posedge clock)
$strobe ("C=%b A=%b Q=%b P=%b time=%0d",M0.C,M0.A,M0.Q,MO.P, $time);
endmodule

Simulation log:

C=0 A=00000 Q=10011 P=101 time=5
C=0 A=10111 Q=10011 P=100 time=15
C=0 A=01011 Q=11001 P=100 time=25
C=1 A=00010 Q=11001 P=011 time=35
C=0 A=10001 Q=01100 P=011 time=45
C=0 A=10001 Q=01100 P=010 time=55
C=0 A=01000 Q=10110 P=010 time=65
C=0 A=01000 Q=10110 P=001 time=75

C=0 A=00100 Q=01011 P=001 time=85
C=0 A=11011 Q=01011 P=000 time=95
C=0 A=01101 Q=10101 P=000 time=105
C=0 A=01101 Q=10101 P=000 time=115
C=0 A=01101 Q=10101 P=000 time=125
I* Test bench for exhaustive simulation

module t_Sequential_Binary_Multiplier;

parameter dp_width = 5; I/ Width of datapath
wire [2 * dp_width -1: 0] Product;

wire Ready,

reg [dp_width -1: 0] Multiplicand, Multiplier;

reg Start, clock, reset_b;
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Sequential_Binary_Multiplier MO (Product, Ready, Multiplicand, Multiplier, Start,
clock, reset_b);
initial #1030000 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end
initial fork
reset b=1,
#2reset b=0;
#3reset b=1;
join
initial begin #5 Start = 1; end
initial begin
#5 Multiplicand = 0;
Multiplier = 0;
repeat (32) #10 begin Multiplier = Multiplier + 1;
repeat (32) @ (posedge M0.Ready) 5 Multiplicand = Multiplicand + 1;
end
end
endmodule
*f

Behavioral Description of a Parallel Multiplier

Structural modeling implicitly specifies the functionality of a digital machine by prescribing
an interconnection of gate-level hardware units. In this form of modeling. a synthesis tool per-
forms Boolean optimization and translates the HDL description of a circuit into a netlist of
gates in a particular technology, e.g., CMOS. Hardware design at this level often requires clev-
erness and accrued experience. It is the most tedious and detailed form of modeling. In con-
trast, behavioral RTL modeling specifies functionality abstractly, in terms of HDL operators.
The RTL model does not specify a gate-level implementation of the registers or the logic to con-
trol the operations that manipulate their contents—those tasks are accomplished by a synthe-
sis tool. RTL modeling implicitly schedules operations by explicitly assigning them to clock
cycles. The most abstract form of behavioral modeling describes only an algorithm, without any
reference to a physical implementation, a set of resources, or a schedule for their use. Thus,
algorithmic modeling allows a designer to explore trade-offs in the space (hardware) and time
domains, trading processing speed for hardware complexity.

HDL Example 8.7 presents an RTL model and an algorithmic model of a binary multiplier.
Both use a level-sensitive cyclic behavior. The RTL model expresses the functionality of a
multiplier in a single statement. A synthesis tool will associate with the multiplication operator
a gate-level circuit equivalent to that shown in Section 4.7. In simulation, when either the mul-
tiplier or the multiplicand changes, the product will be updated. The time required to form the
product will depend on the propagation delays of the gates available in the library of standard
cells used by the synthesis tool. The second model is an algorithmic description of the multiplier.
A synthesis tool will unroll the loop of the algorithm and infer the need for a gate-level circuit
equivalent to that shown in Section 4.7.
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Be aware that a synthesis tool may not be able to synthesize a given algorithmic descrip-
tion, even though the associated HDL model will simulate and produce correct results. One
difficulty is that the sequence of operations implied by an algorithm might not be physically
realizable in a single clock cycle. It then becomes necessary to distribute the operations over
multiple clock cycles. A tool for synthesizing RTL logic will not be able to automatically
accomplish the required distribution of effort, but a tool that is designed to synthesize algo-
rithms should be successful. In effect, a behavioral synthesis tool would have to allocate the
registers and adders to implement multiplication. If only a single adder is to be shared by all
of the operations that form a partial sum, the activity must be distributed over multiple clock
cycles and in the correct sequence, ultimately leading to the sequential binary multiplier for
which we have explicitly designed the controller for its datapath. Behavioral synthesis tools
require a different and more sophisticated style of modeling and are not within the scope of
this text.

HDL Example 8.7

// Behavioral (RTL) description of a parallel multiplier (n = 8)
module Mult (Product, Multiplicand, Multiplier);
input [7: 0] Multiplicand, Multiplier;
output reg [15: 0] Product;
always @ (Multiplicand, Multiplier)
Product = Multiplicand * Multiplier;
endmodule
module Algorithmic_Binary_Muitiplier #(parameter dp_width = 5) (
output [2*dp_width -1: 0] Product, input [dp_width -1: 0] Multiplicand, Multiplier);

reg [dp_width -1: 0] A B, Q; /f Sized for datapath
reg G
integer k;
assign Product = {C, A, Q};
always @ (Multiplier, Multiplicard) begin
Q = Multiplier;
B = Multiplicand;
c=0;
A=0;

for (k = 0; k <= dp_width -1; k = k + 1) begin
if (Q[0]) {C, A}=A +B;
{C,A,Q}=(C,A Q}>>1,

end
end
endmodule
module t_Algorithmic_Binary_Multiplier;
parameter dp_width = 5; /I Width of datapath
wire [2* dp_width -1: 0] Product;
reg [dp_width -1: 0] Multiplicand, Multiplier;

integer Exp_Value;
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reg Error;
Algorithmic_Binary_Multiplier MO (Product, Multiplicand, Multiplier);
1/ Error detection
initial # 1030000 finish;
always @ (Product) begin
Exp_Value = Multiplier * Multiplicand;
/I Exp_Value = Multiplier * Multiplicand +1; // Inject error to confirm detection
Error = Exp_Value * Product;

end
/Il Generate multiplier and multiplicand exhaustively for 5 bit operands
initial begin
#5 Multiplicand = 0;
Multiplier = 0;

repeat (32) #10 begin Multiplier = Multiplier + 1;
repeat (32) #5 Multiplicand = Multiplicand + 1;
end
end
endmodule

8.10 DESIGN WITH MULTIPLEXERS

The sequence-register-and-decoder scheme for the design of a controller has three parts: the flip-
flops that hold the binary state value, the decoder that generates the control outputs, and the gates
that determine the next-state and output signals. In Section 4.11, it was shown that a combi-
national circuit can be implemented with multiplexers instead of individual gates. Replacing
the gates with multiplexers results in a regular pattern of three levels of components. The first
level consists of multiplexers that determine the next state of the register. The second level
contains a register that holds the present binary state. The third level has a decoder that asserts
a unique output line for each control state. These three components are predefined standard cells
in many integrated circuits.

Consider, for example, the ASM chart of Fig. 8.20, consisting of four states and four con-
trol inputs. We are interested in only the control signals governing the state sequence. These
signals are independent of the register operations of the datapath, so the edges of the graph are
not annotated with datapath register operations, and the graph does not identify the output sig-
nals of the controller. The binary assignment for each state is indicated at the upper right corner
of the state boxes. The decision boxes specify the state transitions as a function of the four
control inputs: w, x, y. and z. The three-level control implementation, shown in Fig. 8.21. con-
sists of two multiplexers, MUX1 and MUX2; a register with two flip-flops, G; and Gy; and a
decoder with four outputs—dy, d,, d3, and ds, corresponding to §_0, S_/, 5_2, and S_3, re-
spectively. The outputs of the state-register flip-flops are applied to the decoder inputs and also
to the select inputs of the multiplexers. In this way, the present state of the register is used to
select one of the inputs from each multiplexer. The outputs of the multiplexers are then applied
to the D inputs of G and Gy. The purpose of each multiplexer is to produce an input to its cor-
responding flip-flop equal to the binary value of that bit of the next-state vector. The inputs of
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FIGURE 8.20
Example of ASM chart with four control inputs

the multiplexers are determined from the decision boxes and state transitions given in the ASM
chart. For example, state 00 stays at 00 or goes to 01, depending on the value of input w. Since
the next state of G, is 0 in either case, we place a signal equivalent to logic 0 in MUX1 input
0. The next state of Gpis 0 if w = 0 and 1 if w = 1. Since the next state of Gy is equal to w,
we apply control input w to MUX2 input 0. This means that when the select inputs of the mul-
tiplexers are equal to present state 00, the outputs of the multiplexers provide the binary value
that is transferred to the register at the next clock pulse.
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CLK

FIGURE 8.21
Control implementation with multiplexers

To facilitate the evaluation of the multiplexer inputs, we prepare a table showing the input
conditions for each possible state transition in the ASM chart. Table 8.8 gives this information
for the ASM chart of Fig. 8.20. There are two transitions from present state 00 or 01 and three
from present state 10 or 11. The sets of transitions are separated by horizontal lines across the
table. The input conditions listed in the table are obtained from the decision boxes in the ASM
chart. For example, from Fig. 8.20, we note that present state 01 will go to next state 10if x = |
or to next state 11 if x = 0. In the table, we mark these input conditions as x and x', respectively.
The two columns under “multiplexer inputs™ in the table specify the input values that must be
applied to MUX1 and MUX2. The multiplexer input for each present state is determined from
the input conditions when the next state of the flip-flop is equal to 1. Thus, after present state
01, the next state of G is always equal to 1 and the next state of Gy is equal to the complement
of x. Therefore, the input of MUX1 is made equal to 1 and that of MUX2 to x' when the pres-
ent state of the register is 01. As another example, after present state 10, the next state of G; must
be equal to 1 if the input conditions are yz" or yz. When these two Boolean terms are ORed to-
gether and then simplified, we obtain the single binary variable y, as indicated in the table. The
next state of Gy is equal to 1 if the input conditions are yz = 11. If the next state of G; remains
at 0 after a given present state, we place a 0 in the multiplexer input, as shown in present state
00 for MUX1. If the next state of G, is always 1, we place a | in the multiplexer input. as shown
in present state 01 for MUX1. The other entries for MUX1 and MUX2 are derived in a similar
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Table 8.8
Multiplexer Input Conditions
Present Next Input
State State Condition Inputs
G, Gy G G s MUX1 MUX2
0 0 0 0 w'
0 0 0 1 w 0 w
0 1 1 0 X
0 1 1 1 x' 1 x'
1 0 0 0 ¥
| 0 1 0 yz'
1 0 1 1 ¥z y2' +yz=y yz
1 1 0 1 ¥z
1 1 1 0 y
1 1 1 1 'z y+yz =y+7 vz+y =y

manner. The multiplexer inputs from the table are then used in the control implementation of Fig.
8.21. Note that if the next state of a flip-flop is a function of two or more control variables, the
multiplexer may require one or more gates in its input. Otherwise, the multiplexer input is equal
to the control variable, the complement of the control variable, 0, or 1.

Design Example: Count the Number of Ones in a Register

We will demonstrate the multiplexer implementation of the logic for a control unit by means
of a design example—a system that is to count the number of 1’s in a word of data. The example
will also demonstrate the formulation of the ASMD chart and the implementation of the data-
path subsystem.

From among various alternatives, we will consider a ones counter consisting of two regis-
ters R1 and R2, and a flip-flop E. (A more efficient implementation is considered in the prob-
lems at the end of the chapter.) The system counts the number of 1’s in the number loaded into
register R/ and sets register R2 to that number. For example, if the binary number loaded into
R1is 10111001, the circuit counts the five 1's in R/ and sets register R2 to the binary count 101.
This is done by shifting each bit from register R/ one at a time into flip-flop E. The value in E
is checked by the control, and each time it is equal to 1, register R2 is incremented by 1.

The block diagram of the datapath and controller are shown in Fig. 8.22(a). The datapath
contains registers R, R2, and E, as well as logic to shift the leftmost bit of R/ into E. The unit
also contains logic (a NOR gate to detect whether R/ is 0, but that detail is omitted in the
figure). The external input signal Start launches the operation of the machine; Ready indicates
the status of the machine to the external environment. The controller has status input signals
E and Zero from the datapath. These signals indicate the contents of a register holding the
MSB of the data word and the condition that the data word is 0, respectively. E is the output
of the flip-flop. Zero is the output of a circuit that checks the contents of register R/ for all 0’s.
The circuit produces an output Zero = 1 when R] is equal to 0 (i.e., when R is empty of 1's).
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FIGURE 8.22
Block diagram and ASMD chart for count-of-ones circuit

|E, RI) <= |E, Rl << 1
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A preliminary ASMD chart showing the state sequence and the register operations is il-
lustrated in Fig. 8.22(b), and the complete ASMD chart in Fig. 8.22(c). Asserting Start with
the controller in §_idle transfers the state to S_I, concurrently loads register R1 with the bi-
nary data word, and fills the cells of R2 with 1's. Note that incrementing a number with all
1's in a counter register produces a number with all 0’s. Thus, the first transition from S_I to
§_2 will clear R2. Subsequent transitions will have R2 holding a count of the bits of data that
have been processed. The content of R/, as indicated by Zero, will also be examined in S_I.
If R1 is empty, Zero = 1, and the state returns to S_idle, where it asserts Ready. In state S_I,
Incr_R2 is asserted to cause the datapath unit to increment R2 at each clock pulse. If R is not
empty of 1's, then Zero = 0, indicating that there are some 1's stored in the register. The
number in R/ is shifted and its leftmost bit is transferred into E. This is done as many times
as necessary, until a 1 is transferred into E. For every 1 detected in E, register R2 is incremented
and register R/ is checked again for more 1's. The major loop is repeated until all the 1's in
R1 are counted. Note that the state box of S_3 has no register operations, but the block asso-
ciated with it contains the decision box for E. Note also that the serial input to shift register
R must be equal to 0 because we don’t want to shift external 1's into R/. The register RI in
Fig. 8.22(a) is a shift register. Register R2 is a counter with parallel load. The multiplexer
input conditions for the control are determined from Table 8.9. The input conditions are
obtained from the ASMD chart for each possible binary state transition. The four states are
assigned binary values 00 through 11, The transition from present state 00 depends on Start.
The transition from present state 01 depends on Zero, and the transition from present state 11
on E. Present state 10 goes to next state 11 unconditionally. The values under MUX1 and
MUX2 in the table are determined from the Boolean input conditions for the next state of G,
and Gy, respectively.

The control implementation of the design example is shown in Fig. 8.23. This is a three-level
implementation, with the multiplexers in the first level. The inputs to the multiplexers are ob-
tained from Table 8.9. The Verilog description in HDL Example 8.8 instantiates structural mod-
els of the controller and the datapath. The listing of code includes the lower level modules

Table 8.9
Multiplexer Input Conditions for Design Example

Present Next Input Multiplexer

State State Conditions Inputs
G Go Gy G MUX1  MUX2
0 0 0 0 Start’

0 0 0 1 Start 0 Start
0 1 0o 0 Zero

0 1 1 0 Zero' Zero' 0

1 0 1 1 None 1 1

1 1 1 0 E'

1 1 0 1 E E' E
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Control implementation for count-of-ones circuit

implementing their structures. Note that the datapath unit does not have a reset signal to clear
the registers, but the models for the flip-flop, shift register, and counter have an active-low
reset. This illustrates the use of Verilog data type supply1 to hardwire those ports to logic value
1 in their instantiation within Datapath_STR. Note also that the test bench uses hierarchical de-
referencing to access the state of the controller to make the debug and verification tasks easier,
without having to alter the module ports to provide access to the internal signals. Another de-
tail to observe is that the serial input to the shift register is hardwired to 0. The lower level
models are described behaviorally for simplicity.

HDL Example 8.8

module Count_Ones_STR_STR (count, Ready, data, Start, clock, reset_b});
Il Mux — decoder implementation of control logic

{! controller is structural

/I datapath is structural

parameter R1_size = 8, R2_size = 4;
output [R2_size -1: 0]  count;
output Ready;
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input [R1_size -1: 0] data;
input Start, clock, reset_b;
wire Load_regs, Shift_left, Incr_R2, Zero, E;

Controller_STR MO (Ready, Load_regs, Shift_left, Incr_R2, Start, E, Zero,
clock, reset_b);

Datapath_STR M1 (count, E, Zero, data, Load_regs, Shift_left, Incr_R2,
clock);

endmodule

module Controller_STR (Ready, Load_regs, Shift_left, Incr_R2, Start, E, Zero, clock,
reset_b);

output Ready;

output Load_regs, Shift_left, Incr_R2;

input Start;

input E, Zero;

input clock, reset_b;

supply0 GND;

supply1 PWR;

parameter S0 =2'b00, S1 =2'b01, S2 = 2'b10, S3 = 2'b11; // Binary code

wire Load_regs, Shift_left, Incr_R2;

wire GO0, GO_b, D_in0, D_in1, G1, G1_b;

wire Zero_b = ~Zero;

wire E_b=-~E;

wire [1: 0] select = (G1, GO},

wire [0: 3] Decoder_out;

assign Ready = ~Decoder_out[0];

assign Incr_R2 = ~Decoder_out[1];

assign Shift_left = ~Decoder_out[2);

and (Load_regs, Ready, Start);

mux_4x1_beh Mux_1 (D_in1, GND, Zero_b, PWR, E_b, select);

mux_4x1_beh Mux_0 (D_inO, Start, GND, PWR, E, select);

D_fiip_flop_AR_b M1 (G1, G1_b, D_in1, clock, reset_b);

D_flip_flop_AR_b MO (GO, GO_b, D_in0, clock, reset_b);

decoder_2x4_df M2 (Decoder_out, G1, GO, GND);
endmodule

module Datapath_STR (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock);

parameter R1_size = 8, R2_size = 4,
output [R2_size -1: 0] count;

output E, Zero;

input [R1_size -1: 0] data;

input Load_regs, Shift_left, Incr_R2, clock;
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wire [R1_size -1:0] R1;
wire Zero;
supply0 Gnd;
supply1 Pwr;
assign Zero = (R1 ==0); /I implicit combinational logic
Shift_Reg M1 (R1, data, Gnd, Shift_left, Load_regs, clock, Pwr);
Counter M2 (count, Load_regs, Incr_R2, clock, Pwr);
D_flip_flop_AR M3 (E, w1, clock, Pwr);
and (w1, R1[R1_size -1], Shift_left);
endmodule

module Shift_Reg (R1, data, SI_0, Shift_left, Load_regs, clock, reset_b);
parameter R1_size = 8,

output [R1_size-1: 0] R1;

input [R1_size -1: 0] data;

input SI_0, Shift_left, Load_regs;
input clock, reset_b:

reg [R1_size -1: 0] R1;

always @ (posedge clock, negedge reset_b)
if (reset_b==0) R1 <=0;
else begin
if (Load_regs) R1 <= data; else
if (Shift_left) R1 <= {R1[R1_size -2: 0], SI_0}; end

endmodule

module Counter (R2, Load_regs, Incr_R2, clock, reset_b);
parameter R2_size = 4;
output [R2_size -1: 0] R2;
input Load_regs, Incr_R2;
input clock, reset_b;
reg [R2_size-1:0] R2;

always @ (posedge clock, negedge reset_b)
if (reset_b==0)R2 <=0;

else if (Load_regs) R2 <= {R2_size {1'b1}}: /I Fill with 1
else if (Incr R2==1)R2<=R2 + 1;
endmodule
module D_flip_flop_AR (Q, D, CLK, RST);
output Q
input D, CLK, RST;
reg Q;

always @ (posedge CLK, negedge RST)
if (RST == 0) Q <= 1'b0;
else Q <=D;
endmodule
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module D_flip_flop_AR_b (Q, Q_b, D, CLK, RST);

output Q, Q_b;
input D, CLK, RST;
reg Q;

assign Q b=-~Q;

always @ (posedge CLK, negedge RST)
if (RST ==0) Q <= 1'b0;
else Q <=D;
endmodule
// Behavioral description of four-to-one line multiplexer
Il Verilog 2005 port syntax
module mux_4x1_beh
(output reg m_out,
input in_0,in_1, in_2, in_3,
input [1: 0]  select
)
always @ (in_0, in_1,in_2, in_3, select) // Verilog 2005 syntax
case (select)

2'b00: m_out =in_0;
2'b01: m_out =in_1;
2'b10: m_out =in_2;
2'b11; m_out =in_3;
endcase
endmodule

/I Dataflow description of two-to-four-line decoder

I See Fig. 4.19. Note: The figure uses symbol E, but the

I Verilog model uses enable to indicate functionality clearly.
module decoder_2x4_df (D, A, B, enable),

output [0:3] D

input A, B;

input enable;

assign D[0] = ~(~A & ~B & ~enable),

D[1] = ~(~A & B & ~enable),

D[2] = ~(A & ~B & ~enable),

D[3] = ~(A & B & ~enable);
endmodule

module t_Count_Ones;
parameter R1_size = 8, R2_size = 4;
wire [R2_size -1: 0] RZ;
wire [R2_size -1: 0]  count;

399
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wire Ready;

reg [R1_size -1: 0] data;

reg Start, clock, reset_b;

wire [1: 0] state; /I Use only for debug

assign state = {(M0.M0.G1, M0.M0.GO};
Count_Ones_STR_STR MO (count, Ready, data, Start, clock, reset_b);
initial #650 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end
initial fork

#1reset b=1,

#3 reset_ b=0;

#4 reset b=1;

#27 reset_b=0;

#29reset_ b=1;

#355 reset b=0;

#365 reset_ b=1;

#4 dala = B'Hff;

#145 data = 8'haa;

#25Start =1,

#35 Start=0;

#55 Start = 1;

#65 Start = 0,

#395 Start = 1;

#4065 Start = 0;
join

endmodule

Testing the Ones Counter

The test bench in HDL Example 8.8 was used to produce the simulation results in Fig. 8.24.
Annotations have been added for clarification. In Fig. 8.24(a), reser_b is toggled low at
t = 3 to drive the controller into S_idle, but with Starr not yet having an assigned value.
(The default is x.) Consequently, the controller enters an unknown state (the shaded wave-
form) at the next clock, and its outputs are unknown. When reser_b is asserted (low) again
at r = 27, the state enters S_idle. Then, with Start = 1 at the first clock after reser_b is de-
asserted, (1) the controller enters S_17, (2) Load_regs causes R/ to be set to the value of
data, namely, 8'Hff, and (3) R2 is filled with 1's. At the next clock, R2 starts counting from 0.
Shift_left is asserted while the controller is in state S_2, and incr_R2 is asserted while the con-
troller is in state S_J/. Notice that R2 is incremented in the next cycle after incr_R2 is as-
serted. No output is asserted in state S_3. The counting sequence continues in Fig. 8.24(b)
until Zero is asserted, with E holding the last 1 of the data word. The next clock produces
count = 8, and srare returns to S_idle. (Additional testing is addressed in the problems at
the end of the chapter.)
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Simulation waveforms for count-of-ones circuit

RACE-FREE DESIGN

Once a circuit has been synthesized, either manually or with tools, it is necessary to verify that
the simulation results produced by the HDL behavioral model match those of the netlist of the
gates (standard cells) of the physical circuit. It is important to resolve any mismatch, because
the behavioral model was presumed to be correct. There are various potential sources of mis-
match between the results of a simulation, but we will consider one that typically happens in
HDL-based design methodology. Three realities contribute to the potential problem: (1) A
physical feedback path exists between a datapath unit and a control unit whose inputs include
status signals fed back from the datapath unit; (2) blocked procedural assignments execute
immediately, and behavioral models simulate with 0 propagation delays, effectively creating
immediate changes in the outputs of combinational logic when its inputs change (i.e., changes
in the inputs and the outputs are scheduled in the same time step of the simulation); and (3) the
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FIGURE 8.24 (Continued)

order in which a simulator executes multiple blocked assignments to the same variable at a
given time step of the simulation is indeterminate (i.e., unpredictable).

Now consider a sequential machine with an HDL model in which all assignments are
made with the blocked assignment operator. At a clock pulse, the register operations in the
datapath, the state transitions in the controller, the updates of the next state and output logic
of the controller, and the updates to the status signals in the datapath are all scheduled to occur
at the same time step of the simulation. Which executes first? Suppose that when a clock pulse
occurs, the state of the controller changes before the register operations execute. The change
in the state could change the outputs of the control unit. The new values of the outputs would
be used by the datapath when it finally executes its assignments at that same clock pulse. The
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result might not be the same as it would have been if the datapath had executed its assign-
ments before the control unit updated its state and outputs. Conversely, suppose that when
the clock pulse occurs, the datapath unit executes its operations and updates its status signals
first. The updated status signals could cause a change in the value of the next state of the con-
troller, which would be used to update the state. The result could differ from that which
would result if the state had been updated before the edge-sensitive operations in the data-
path executed. In either case, the timing of register transfer operations and state transitions
in the different representations of the system might not match. Fortunately, there is a solu-
tion to this dilemma.

A designer can eliminate the sofrware race conditions just described by observing the rule
of modeling combinational logic with blocked assignments and modeling state transitions and
edge-sensitive register operations with nonblocking assignments. A software race cannot hap-
pen if nonblocking operators are used as shown in all of the examples in this text, because the
sampling mechanism of the nonblocking operator breaks the feedback path between a state
transition or edge-sensitive datapath operation and the combinational logic that forms the next
state or inputs to the registers in the datapath unit. The mechanism does this because simula-
tors evaluate the expressions on the right-hand side of their nonblocking assignment state-
ments before any blocked assignments are made. Thus, the nonblocking assignments cannot
be affected by the results of the blocked assignments. In sum, always use the blocking opera-
tor to model combinational logic, and use the nonblocking operator to model edge-sensitive reg-
ister operations and state transitions.

It also might appear that the physical structure of a datapath and the controller together cre-
ate a physical (i.e., hardware), race condition, because the status signals are fed back to the con-
troller and the outputs of the controller are fed forward to the datapath. However, timing analysis
can verify that a change in the output of the controller will not propagate through the datapath
logic and then through the input logic of the controller in time to have an effect on the output
of the controller until the next clock pulse. The state cannot update until the next edge of the
clock, even though the status signals update the value of the next state. The flip-flop cuts the
feedback path between clock cycles. In practice, timing analysis verifies that the circuit will
operate at the specified clock frequency, or it identifies signal paths whose propagation delays
are problematic. Remember the design must implement the correct logic and operate at the
speed prescribed by the clock.

8.12 LATCH-FREE DESIGN

Continuous assignments model combinational logic implicitly. A feedback-free continuous as-
signment will synthesize to combinational logic, and the input-output relationship of the logic
is automatically sensitive to all of the inputs of the circuit. In simulation, the simulator mon-
itors the right-hand sides of all continuous assignments, detects a change in any of the refer-
enced variables, and updates the left-hand side of an affected assignment statement. Unlike a
continuous assignment, a cyclic behavior is not necessarily completely sensitive to all of the
variables that are referenced by its assignments statements. If a level-sensitive cyclic behav-
ior is used to describe combinational logic, it is essential that the sensitivity list include every
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variable that is referenced on the left-hand side of an assignment statement in the behavior.
If the list is incomplete, the logic described by the behavior will be synthesized with latches
at the outputs of the logic. This implementation wastes silicon area and may have a mismatch
between the simulation of the behavioral model and the synthesized circuit. These difficul-
ties can be avoided by ensuring that the sensitivity list is complete, but, in large circuits, it is
easy to fail to include every referenced variable in the sensitivity list of a level-sensitive cyclic
behavior. Consequently, Verilog 2001 included a new operator to reduce the risk of acciden-
tally synthesizing latches.

In Verilog 2001, the tokens @ and * can be combined as @* or @(*) and are used without
a sensitivity list to indicate that execution of the associated statement is sensitive to every vari-
able that is referenced on the right-hand side of an assignment statement in the logic. In effect,
the operator @* indicates that the logic is to be interpreted as level-sensitive combinational
logic; the logic has an implicit sensitivity list composed of all of the variables that are refer-
enced by the procedural assignments. Using the @* operator will prevent accidental synthe-
sis of latches.

HDL Example 8.9

The following level-sensitive cyclic behavior will synthesize a two-channel multiplexer:

module mux_2_ V2001 (output reg [31: 0] y, input [31: 0] a, b, input sel);
always @"
y=sel?ab,

endmodule

The cyclic behavior has an implicit sensitivity list consisting of a, b, and sel.

8.13 OTHER LANGUAGE FEATURES

The examples in this text have used only those features of the Verilog HDL that are appropriate
for an introductory course in logic design. Verilog 2001 contains features that are very useful to
designers, but which are not considered here. Among them are multidimensional arrays, variable
part selects, array bit and part selects, signed reg, net, and port declarations, and local parameters.
These enhancements are treated in more advanced texts using Verilog 2001 and Verilog 2005.

PROBLEMS

Answers to problems marked with * appear at the end of the book.

8.1* Explain in words and write HDL statements for the operations specified by the following regis-
ter transfer notation:
(a) R2Z—R2 + |,RI <R
(b) R3Ie—R3 — 1
(c) If (S; = 1) then (RO« RI) else if (§; = 1) then (RO« R2)
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Draw (1) a block diagram showing the controller, datapath unit (with internal registers), and sig-
nals, and (2) the portion of an ASMD chart starting from an initial state. There are two control
signals: x and y. If xy = 01, register R is incremented by 1 and control goes to a second state. If
xy = 10, register R is cleared to zero and control goes from the initial state to a third state. Oth-
erwise, control stays in the initial state. Assume active-low synchronous reset.

Draw the ASMD charts for the following state transitions:

(a) If x = 1, control goes from state §) to state Sy: if x = 0, generate a conditional operation
R <= R + 2 and go from S, to S;.

(b) If x = 1, control goes from §, to §; and then to Sy; if x = 0, control goes from S, to Ss.

(c) Start from state Sy; then if xy = 00, goto S5:if xy = 10, goto S3; and if xy = 01, goto §y;
otherwise, go to S.

Show the eight exit paths in an ASM block emanating from the decision boxes that check the
eight possible binary values of three control variables x, y, and z.

Explain how the ASM and ASMD charts differ from a conventional flowchart. Using Fig. 8.5 as
an illustration, show the difference in interpretation,

Construct a block diagram and an ASMD chart for a digital system that counts the number of
people in a room, The one door through which people enter the room has a photocell that changes
a signal x from | to O when the light is interrupted. They leave the room from a second door with
a similar photocell that changes a signal y from 1 to 0 when the light is interrupted. The datapath
circuit consists of an up-down counter with a display that shows how many people are in the
room.

Draw a block diagram and an ASMD chart for a circuit with two eight-bit registers RA and RB
that receive two unsigned binary numbers. The circuit performs the subtraction operation

RA<— RA — RB

Use the method for subtraction described in Section 1.5, and set a borrow flip-flop to 1 if the an-

swer is negative. Write and verify an HDL model of the circuit.

Design a digital circuit with three 16-bit registers AR, BR. and CR that perform the following

operations:

(a) Transfer two 16-bit signed numbers (in 2's-complement representation) to AR and BR.

(b) If the number in AR is negative, divide the number in AR by 2 and transfer the result to reg-
ister CR.

(c) If the number in AR is positive but nonzero, multiply the number in BR by 2 and transfer the
result to register CR,

(d) If the number in AR is zero, clear register CR to 0,

(e) Write and verify a behavioral model of the circuit,

Design the controller whose state diagram is given by Fig. 8.11(a). Use one flip-flop per state (a one-

hot assignment). Write, simulate, verify, and compare RTL and structural models of the controller.

The state diagram of a control unit is shown in Fig. P8.10. It has four states and two inputs x and

. Draw the equivalent ASM chart. Write and verify a Verilog model of the controller.

Design the controller whose state diagram is shown in Fig. P8.10. Use D flip-flops.
Design the four-bit counter with synchronous clear specified in Fig. 8.10.

Simulate Design_Example_STR (see HDL Example 8.4), and verify that its behavior matches
that of the RTL description. Obtain state information by displaying GO and G/ as a concatenal-
ed vector for the state.
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FIGURE P8.10
Control state diagram for Problems 8.10 and 8.11

8.14

8.15

8.16*

8.7

8.18*

8.19

8.20*

8.21

8.22

8.23

What, if any, are the consequences of the machine in Design_Example_RTL (see HDL Example
8.2) entering an unused state?

Simulate Design_Example_RTL, and verify that it recovers from an unexpected reset condition
during its operation, i.e., a “running reset” or a “reset on-the-fly.”

Develop a block diagram and an ASMD chart for a digital circuit that multiplies two binary num-
bers by the repeated-addition method. For example, to multiply 5 X 4, the digital system evalu-
ates the product by adding the multiplicand four times: 5 + 5 + 5 + 5 = 20. Design the circuit.
Let the multiplicand be in register BR, the multiplier in register AR, and the product in register
PR. An adder circuit adds the contents of BR to PR. A zero-detection signal indicates whether AR
is 0. Write and verify a Verilog behavioral model of the circuit.

Prove that the multiplication of two n-bit numbers gives a product of length less than or equal to
2n bits,

In Fig. 8.14, the Q register holds the multiplier and the B register holds the multiplicand. Assume
that each number consists of 16 bits.

(a) How many bits can be expected in the product, and where is it available?

(b) How many bits are in the P counter, and what is the binary number loaded into it initially?
(c) Design the circuit that checks for zero in the P counter.

List the contents of registers C, A, @, and P in a manner similar to Table 8.5 during the process
of multiplying the two numbers 11011 (multiplicand) and 10111 (multiplier).

Determine the time it takes to process the multiplication operation in the binary multiplier described
in Section 8.8, Assume that the Q register has n bits and the clock cycle is 1 nanoseconds.
Design the control circuit of the binary multiplier specified by the state diagram of Fig. 8.16,
using multiplexers, a decoder, and a register.

Figure P8.22 shows an alternative ASMD chart for a sequential binary multiplier. Write and verify an
RTL model of the system. Compare this design with that described by the ASMD chart in Fig. 8.15(b).

Figure P8.23 shows an alternative ASMD chart for a sequential binary multiplier. Write and verify an
RTL model of the system. Compare this design with that described by the ASMD chart in Fig. 8.15(b).
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8.24 The HDL description of a sequential binary multiplier given in HDL Example 8.5 encapsulates
the descriptions of the controller and the datapath in a single Verilog module. Write and verify a
model that encapsulates the controller and datapath in separate modules.

8.25 The sequential binary multiplier described by the ASMD chart in Fig. 8.15 does not consider
whether the multiplicand or the shifted multiplier is 0. Therefore, it executes for a fixed number
of clock cycles, independently of the data.

(a) Develop an ASMD chart for a more efficient multiplier that will terminate execution as soon
as either word is found to be zero.
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8.26

8.27

8.28

(b) Write an HDL description of the circuit. The controller and datapath are to be encapsulated
in separate Verilog modules.
(c) Write a test plan and a test bench, and verify the circuit.

Modify the ASMD chart of the sequential binary multiplier shown in Fig. 8.15 to add and shift
in the same clock cycle. Write and verify an RTL description of the system.

The second test bench given in HDL Example 8.6 generates a product for all possible values of
the multiplicand and multiplier. Verifying that each result is correct would not be practical, so
modify the test bench to include a statement that forms the expected product. Write additional
statements to compare the result produced by the RTL description with the expected result. Your
simulation is to produce an error signal indicating the result of the comparison. Repeat for the struc-
tural model of the multiplier.

Write the HDL structural description of the multiplier designed in Section 8.8. Use the block di-
agram of Fig. 8.14(a) and the control circuit of Fig. 8.18. Simulate the design and verify its func-
tionality by using the test bench of HDL Example 8.6.
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8.29 An ASMD chart for a finite state machine is shown in Fig. P8.29. The register operations are not
specified, because we are interested only in designing the control logic.
(a) Draw the equivalent state diagram.
(b) Design the control unit with one flip-flop per state,
(c) List the state table for the control unit.
(d) Design the control unit with three D flip-flops, a decoder, and gates.

Y

FIGURE P8.29
ASMD chart for Problem 8.29
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{e) Derive a table showing the multiplexer input conditions for the control unit.

(f) Design the control unit with three multiplexers, a register with three flip-flops, anda 3 x 8
decoder.

(g) Using the results of (f), write and verify a structural model of the controller,

{h) Write and verify an RTL description of the controller.

8.30* What is the value of E in each HDL block, assuming that RA = 1?

(a) RA=RA-1; (b) RA<=RA-1;
if(RA==0)E=1; If(RA==0)E <=1;
elseE=0; else E <=0;

8.371* Using the Verilog HDL operators listed in Table 8.2, assume that A = 4'b0110. B = 4'b0010.

8.32

8.33

8.34

and C = 4'b0000 and evaluate the result of the following operations:
A*B;A+B;A-B;~C;A&B;A|B;A"B;&A;~|C;A||B;A&&C;|A;A<B;A>B;
Al=B;

Consider the following always block:
always @ (posedge CLK)
if (S1)R1<=R1+R2;
alse if (S2) R1 <=R1 +1;
else R1 <=R1;
Using a four-bit counter with parallel load for R/ (as in Fig. 6.15) and a four-bit adder, draw a block
diagram showing the connections of components and control signals for a possible synthesis of
the block.

The multilevel case statement is often translated by a logic synthesizer into hardware multiplex-
ers. How would you translate the following case block into hardware (assume registers of eight
bits each)?
case (state)
S0: R4 =RO0;
S1: R4=R1;
§2: R4=R2;
S3: R4 =R3;
endcase

The design of a circuit that counts the number of ones in a register is carried out in Section 8.10.

The block diagram for the circuit is shown in Fig. 8.22(a), a complete ASMD chart for the cir-

cuit appears in Fig. 8.22(c), and structural HDL models of the datapath and controller are given

in HDL Example 8.8. Using the operations and signal names indicated on the ASMD chart,

(a) Write Datapath_BEH, an RTL description of the datapath unit of the ones counter. Write a
test plan specifying the functionality that will be tested, and write a test bench to implement
the plan. Execute the test plan to verify the functionality of the datapath unit, and produce
annotated simulation results relating the test plan to the waveforms produced in a simulation,

(b) Write Controller_BEH, an RTL description of the control unit of the ones counter. Write a
test plan specifying the functionality that will be tested, and write a test bench to imple-
ment the plan. Execute the test plan to verify the functionality of the control unit, and pro-
duce annotated simulation results relating the test plan to the waveforms produced in a
simulation.

(¢c) Write Count_Ones_BEH_BEH, a top-level module encapsulating and integrating
Controller_BEH and Datapath_BEH. Write a test plan and a test bench, and verify the
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description. Produce annotated simulation results relating the test plan to the waveforms pro-
duced in a simulation.

(d) Write Controller_BEH_IHot, an RTL description of a one-hot controller implementing the
ASMD chart of Fig. 8.22(c). Write a test plan specifying the functionality that will be test-
ed, and write a test bench to implement the plan. Execute the test plan and preduce annotat-
ed simulation results relating the test plan to the waveforms produced in a simulation.

fe) Write Count_Ones_BEH_I_Hoi, a top-level module encapsulating the module
Controller_BEH_]_Hor and Dataparh_BEH. Write a test plan and a test bench, and verify
the description. Produce annotated simulation results relating the test plan to the waveforms
produced in a simulation,

The HDL description and test bench for a circuit that counts the number of ones in a register are
given in HDL Example 8.8. Modify the test bench and simulate the circuit to verify that the sys-
tem operates correctly for the following patterns of data: 8 8'hff, 8'hOf, 8'hf0, 8'h00, 8'haa,
8'h0a, 8’ha0, 8'h55, 8'h05, 8'hf50, 8'ha5, and 8'h5a.

The design of a circuit that counts the number of ones in a register is carried out in Section 8.10.

The block diagram for the circuit is shown in Fig, 8.22(a), a complete ASMD chart for this cir-

cuit appears in Fig, 8.22(c), and structural HDL models of the datapath and controller are given

in HDL Example 8.8. Using the operations and signal names indicated on the ASMD chart,

(a) Design the control logic, employing one flip-flop per state (a one-hot assignment). List the
input equations for the four flip-flops.

(b) Write Controller_Gates_I_Hot, a gate-level HDL structural description of the circuit, using
the control designed in part (a) and the signals shown in the block diagram of Fig. 8.22(a).

(¢) Write a test plan and a test bench, and then verify the controller.

(d) Write Counr_Ones_Gates_I_Hot_STR, a top-level module encapsulating and integrating in-
stantiations of Controfler_Gates_I_Hor and Daraparh_STR. Write a test plan and a test bench
to verify the description. Produce annotated simulation results relating the test plan to the
waveforms produced in a simulation.

Compared with the circuit presented in HDL Example 8.8, a more efficient circuit that counts the

number of ones in a data word is described by the block diagram and the partially completed

ASMD chart in Fig. P8.37. This circuit accomplishes addition and shifting in the same clock

cycle and adds the LSB of the data register to the counter register at every clock cycle.

(a) Complete the ASMD chart.

(b) Using the ASMD chart, write an RTL description of the circuit. A top-level Verilog module,
Count_of_ones_2_Beh is to instantiate separate modules for the datapath and control units.

(c) Design the control logic, using one flip-flop per state (a one-hot assignment). List the input
equations for the flip-flops.

(d) Write the HDL structural description of the circuit, using the controller designed in part (b)
and the block diagram of Fig. P8.37(a).

(e) Write a test bench to test the circuit. Simulate the circuit to verify the operation described in
both the RTL and the structural programs.

The addition of two signed binary numbers in the signed-magnitude representation follows the
rules of ordinary arithmetic: If the two numbers have the same sign (both positive or both nega-
tive), the two magnitudes are added and the sum has the common sign; if the two numbers have
opposite signs, the smaller magnitude is subtracted from the larger and the result has the sign of
the larger magnitude. Write an HDL behavioral description for adding two 8-bit signed numbers
in signed-magnitude representation and verify. The leftmost bit of the number holds the sign and
the other seven bits hold the magnitude.
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8.39* For the circuit designed in Problem 8.16,
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8.41

(a) Write and verify a structural HDL description of the circuit, The datapath and controller are
10 be described in separate units.

(b) Write and verify an RTL description of the circuit. The datapath and controller are to be de-
scribed in separate units.

Meodify the block diagram of the sequential multiplier given in Fig. 8.14{a) and the ASMD chart
in Fig. 8.15(b) to describe a system that multiplies 32-bit words, but with 8-bit (bytewide) exter-
nal datapaths. The machine is to assert Ready in the (initial) reset state. When Start is asserted, the
machine is to fetch the data bytes from a single 8-bit data bus in consecutive clock cycles (multi-
plicand bytes first, followed by multiplier bytes, least significant byte first) and store the data in
datapath registers. Gor_Data is to be asserted for one cycle of the clock when the transfer is com-
plete. When Run is asserted, the product is to be formed sequentially. Done_~Product is to be as-
serted for one clock cycle when the multiplication is complete. When a signal Send_Dara is asserted,
each byte of the product is to be placed on an 8-bit output bus for one clock cycle, in sequence,
beginning with the least significant byte. The machine is to return to the initial state after the prod-
uct has been transmitted. Consider safeguards, such as not attempting to send or receive data while
the product is being formed. Consider also other features that might eliminate needless multipli-
cation by 0. For example, do not continue to multiply if the shifted multiplier is empty of 1's.

The block diagram and partially completed ASMD chart in Fig. P8.41 describe the behavior of a
two-stage pipeline that acts as a 2:1 decimator with a parallel input and output. Decimators are
used in digital signal processors to move data from a datapath with a high clock rate to a data-
path with a lower clock rate, converting data from a parallel format to a serial format in the
process. In the datapath shown, entire words of data can be transferred into the pipeline at twice
the rate at which the contents of the pipeline must be dumped into a holding register or consumed
by some processor, The contents of the holding register R0 can be shifted out serially. to accomplish
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FIGURE P8.41
Two-stage pipeline register: Datapath unit and ASMD chart

an overall parallel-to-serial conversion of the data stream, The ASMD chart indicates that the
machine has synchronous reset to S_idle, where it waits until rs7 is de-asserted and En is assert-
ed. Note that synchronous transitions which would occur from the other states to §_idle under the
action of rst are not shown. With En asserted. the machine transitions from S_idle to 5_1, ac-
companied by concurrent register operations that load the MSByte of the pipe with Data and
move the content of PI to the LSByte (P0). At the next clock, the state goes to §_full, and now
the pipe is full. If Ld is asserted at the next clock, the machine moves to S§_/ while dumping the
pipe into a holding register RO. If Ld is not asserted, the machine enters S_wair and remains there
until Ld is asserted, at which time it dumps the pipe and returns to S_/ or to S_idle, depending
on whether En is asserted, too. The data rate at Ry is one-half the rate at which data are supplied
to the unit from an external datapath.
(a) Develop the complete ASMD chart.
(b) Using the ASMD chart developed in (a), write and verify an HDL model of the datapath.
(c) Write and verify a Verilog behavioral model of the control unit.
(d) Encapsulate the datapath and controller in a top-level module, and verify the integrated
system.
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